CONCEPT: WORK BY GRAVITY ON INCLINED PLANES

- Remember that θ in **W=Fdcos** θ is ALWAYS the angle *between* **F** and Δx (d).
 - For incline planes, be careful **NOT** to plug in the incline angle θ_x into Fdcos θ !

EXAMPLE: A 100kg box is released at the top of a 12m-long incline making a 37° angle with the horizontal. Calculate the work done on the box by mg_x , mg_y , and mg_x .

WORK & ENERGY

$$KE = \frac{1}{2}mv^{2}$$

$$W = Fd\cos\theta$$

$$W_{g} = \pm mg\Delta y$$

$$W_{NET} = \Delta K = K_{f} - K_{i}$$

<u>PROBLEM</u>: You pull a 19 kg crate at rest up a 15m ramp inclined at 36° above the horizontal. You pull with a constant 130N force parallel to the ramp. Calculate **a)** the work done by gravity; **b)** the final kinetic energy of the crate.

WORK & ENERGY

$$KE = \frac{1}{2}mv^2$$

 $W = Fdcos\theta$

 $W_g = -mg\Delta y$

 $W_{NET} = \Sigma W = F_{NET} d\cos\theta = \Delta K$

<u>PROBLEM</u>: A 7kg crate slides 2.5m down a ramp inclined at 26°. The coefficient of friction is 0.36. **a)** Calculate the work done by gravity. **b)** Calculate the work done by friction. **c)** Find the speed of the crate if it starts from rest.

WORK & ENERGY

$$KE = \frac{1}{2}mv^2$$

$$W = Fdcos\theta$$

$$W_g = -mg\Delta y$$

 $W_{NET} = \Sigma W = F_{NET} d \cos \theta = \Delta K$