PRESSURE AND ATMO	SPHERIC P	RESS	URE
■ Pressure P =	- 1	- 1	ak

EXAMPLE 1: Two identical wood blocks (800 kg/m³, and 0.2 m x 0.2 m x 1.0 m) are placed on outdoors, horizontal surfaces as shown. Calculate the pressure of each block on the surfaces they each sit on.

- Just like how the objects above push down against the floor, the AIR above the objects pushes down against them.
 - This is called ______, and it has a standard value at SEA LEVEL:

 \rightarrow P_{AIR} = 1.01 x 10⁵ Pa = 1 atm = 14.7 lb/in² = 760 mmHg (assume this, unless otherwise stated)

EXAMPLE 2: For the blocks above, calculate the force applied by the air above them to their top surfaces.

(a) (b)

PRACTICE: WEIGHT AND PRESSURE OF AIR

PRACTICE: A large warehouse is 100 m wide, 100 m deep, 10 m high:

- (a) What is the total weight of the air inside the warehouse?
- (b) How much pressure does the weight of the air apply on the floor?

PRESSURE IN AIR AND IN LIQUIDS (INTRO)

If you are out in the	open, as you g	o UP in height, there	e is LESS air abo	ove you, so:	
(1) Air Press	ure P ,air	(less	weight pushing	down)	
(2) Air Densi	ty ρ , _{AIR}	(mole	cules more spre	ead out)	
- Because the density of AIR is low, both changes are only significant over LARGE distances.					
EXAMPLE 1: Which	of the following	is the best approxima	ation for the atm	ospheric pressure at 100 m above se	ea level?
	ŭ	(b) 1.00 x 10 ⁵ Pa		• •	
If under any LIQUII	D, as you go DC	DWN in height/depth	(go deeper), the	ere is MORE liquid above you, so:	
(1) Water Pre	essure	(more weigh	t pushing down)		
- Cha	anges are signif	icant even for small o	distances		
(2) Water De	nsity does NOT	change much (assu	me constant)		
- Cha	anges are insigr	nificant even for large	distances		
- The Pressure in a liquid changes with depth according to this equation:					
\rightarrow P	вот =	P _{TOP}	+ ρgh		
Absol	ute Pressure	Relative Pressure	Gauge Press	ure	
	•	. •		n your feet, and the blood pressure no of your head; (b) at the bottom of yo	•

• This equation also works for air pressure, but we usually ignore changes in air pressure since they require long distances.

CALCULATING PRESSURES IN LIQUIDS

- ullet Remember that pressure in a liquid changes with $depth
 ightarrow P_{BOT} = P_{TOP} +
 ho gh$
 - h is NOT height from bottom, but _____ measured from _____.
- The point / boundary where two materials "touch" is called an _____
 - At these points, the pressure of both materials is the _____.
 - Therefore, everywhere a liquid "touches" air $ightarrow P_{LIOUID} = P_{AIR}$

- If $P_{TOP} = P_{AIR}$, then gauge pressure is just the _____ term(s) in the pressure EQ.

EXAMPLE: You pour a 6 cm column of 1,200 kg/m³ blue liquid, and a 4 cm column of 800 kg/m³ yellow liquid, on a 12 cm-tall beaker, as shown. The liquids do not mix. Calculate:

- a) The absolute pressure at the blue/yellow interface
- b) The gauge pressure at the blue/yellow interface
- c) The absolute pressure at the bottom of the blue liquid

PRACTICE: PRESSURE / MARIANA TRENCH

<u>PRACTICE</u>: The deepest known point on Earth is called the Challenger Deep, within the Mariana Trench, at a depth of ~11,000 m (~36,000 ft). If the surface area of the average human ear is 20 cm², how much average force would be exerted on your ear at that depth?

PRACTICE: PRESSURE / TWO-LIQUID BEAKER

<u>PRACTICE</u>: A tall cylindrical beaker 10 cm in radius is placed on a picnic table outside. You pour 5 L of an 8,000 kg/m³ liquid and 10 L of a 6,000 kg/m³ liquid into it. Calculate the total pressure at the bottom of the beaker.

PRACTICE: PRESSURE / FORCES UNDERWATER

<u>PRACTICE</u>: A wooden cube, 1 m on all sides and having density 800 kg/m³, is held under water in a large container by a string, as shown below. The top of the cube is exactly 2 m below the water line. Calculate the difference between the force applied by water to the top and to the bottom faces of the cube (Hint: calculate the two forces, then subtract).

