CONCEPT: ELASTIC COLLISIONS

TYPES OF COLLISIONS

ELASTIC

Completely Inelastic

- Remember: Momentum is ALWAYS conserved in ALL types of collisions.
 - In Elastic Collisions, _____ is <u>also</u> conserved. (**K**_i __ **K**_f)
- For Elastic Collisions <u>ONLY</u>, we often MUST use an extra equation:

- Because we have 2 EQs with the <u>same</u> unknowns, we must solve a <u>System of EQs</u> using _____
 - **EQ Addition:** Line up equations top-to-bottom, then add & eliminate 1 variable.
 - To 'line up' the EQs to cancel an unknown, you must often multiply an EQ by a number.

<u>EXAMPLE</u>: Two objects ($m_1 = 5kg$, $m_2 = 3kg$) on a smooth, frictionless surface undergo a head-on elastic collision. Initially, the 5kg block moves to the right at 2m/s, while the 3kg block moves to the left at 4m/s. Calculate the final velocities of both blocks after the collision.

CONSERVATION OF MOMENTUM & ELASTIC COLLISIONS

- 1) Draw Diagrams for Before & After
- 2) Write Cons. of Moment. & Elastic Coll. EQs
- 3) Solve Sys. of EQs by EQ Addition
- 4) Plug 1st target into EQs & solve other targets

MOMENTUM & ELASTIC COLLISIONS

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$

$$v_{1i} + v_{1f} = v_{2i} + v_{2f}$$

<u>PROBLEM</u>: Two blocks of <u>equal mass</u> undergo a head-on elastic collision. Object **A** moves to the right at 5m/s, while Object **B** moves to the left at 3m/s. Calculate the magnitude & direction of the two blocks' final velocities after colliding.

CONSERVATION OF MOMENTUM & ELASTIC COLLISIONS

- 1) Draw Diagrams for Before & After
- 2) Write Cons. of Moment. & Elastic Coll. EQs
- 3) Solve Sys. of EQs by EQ Addition
- 4) Plug 1st target into EQs & solve other targets

MOMENTUM & ELASTIC COLLISIONS

 $m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ (All types) $v_{1i} + v_{1f} = v_{2i} + v_{2f}$ (Elastic Collisions ONLY)

• PRO-TIP: When 2 objects of equal mass elastically collide, they "______" velocities.

CONCEPT: ELASTIC COLLISIONS WITH STATIONARY OBJECTS

• A common setup in elastic collisions is 1 moving object (m₁) hitting a stationary object (m₂).

		7	_
Ξ	m ₁		n

- For these problems, $v_{2i} = \underline{\hspace{1cm}}$, which simplifies our equations.

- Combining both EQ's, we can get 2 extra equations for v_{1f} & v_{2f} :

EXAMPLE: In the following examples, a round boulder has a mass of 40kg and a golf ball has a mass 0.1kg. Calculate the final velocities of both blocks after the **elastic** collision for the following 3 cases:

a) Boulder hits with another boulder

b) Golf ball hits a boulder

c) Boulder hits a golf ball

• When $m_1 = m_2$ (Equal Masses):

• When $m_1 \ll m_2$ (massive target):

• When $m_1 \gg m_2$ (massive projectile):

• After the collision, m₂ ALWAYS moves forward, but m₁ may move forward or backward depending on its mass.