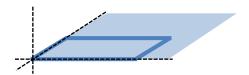

CONCEPT: FORCE AND TORQUE ON CURRENT LOOPS

• Remember: Current-carrying wires in a Magnetic Field FEEL a Magnetic Force

→ F=____

• Wires can be arranged to form LOOPS. In SOME cases, you get a TORQUE:


- The NET force on a LOOP in an uniform B-Field is _____.
- \rightarrow Magnetic Torque τ = _____
 - Angle **O** is between Normal of _____ and ____.
- \rightarrow Magnetic Moment μ = _____

EXAMPLE: A loop with a magnetic moment of 0.5 Am² carries a current of 0.01 A. If it is placed in the presence of a magnetic field of strength 0.05 T, which points in the plane of the loop, what magnitude torque will the loop experience?

EXAMPLE: TORQUE ON LOOP AT AN ANGLE

A wire is arranged as a rectangular 4 m wide and 2 m deep. It is placed in the plane shown below, where a constant 5 T magnetic field exists. The wire loop is parallel to the plane, and the magnetic field is directed 30° above the plane. If the loop experiences a net torque of 10 N m, what must the current running through it be?

