CONCEPT: CALCULATING WORKS FOR MULTIPLE THERMODYNAMIC PROCESSES

- Many problems will have a system going through multiple thermodynamic processes.
 - The total work done over *multiple* processes is the _____ of all works done in each process.

	SPECIAL THERMODYNAMIC PROCESSES							
Isobai	ric (Constant)	Isovolumetric (Constant) a.k.a. "Isochoric"	Isothermal	Adiabatic				
• Straight Horizontal line		• Straight line						
ΔE_{int}								
Q								
W	PΔV							

EXAMPLE: 3 moles of an ideal gas are in a container.

- a) Calculate the total work done by the gas for the $A \rightarrow B \rightarrow C$ path.
- **b)** Calculate the total work done by the gas for the $A \rightarrow D \rightarrow C$ path.

• The Work done between 2 states depends on the _____ taken.

PROBLEM: How much work is done by a gas that expands from A to B along the path shown below?

- **A)** 9×10⁷ J
- **B)** 3.6×10⁷ J
- **C)** 3.3×10⁷ J
- **D)** 1.2×10⁷ J

 $A = b \cdot h$

 $A = \frac{1}{2} \boldsymbol{b} \cdot \boldsymbol{h}$

 $A = \frac{1}{2}(b_1 + b_2) \cdot h$

<u>PROBLEM</u>: A gas with an initial volume of 0.2 m³ is heated at constant volume, and the pressure increases from 2×10⁵ Pa to 5×10⁵. Then, it compresses at constant pressure until it reaches a final volume of 0.12 m³. Draw the two processes in the PV diagram below and find the total work done by the gas.

lso-P		lso-V	lso-T	Adiab.
↑ • • • • • • • • • • • • • • • • • • •		, , , , , , , , , , , , , , , , , , ,		
ΔE_{int}				
Q				
W	PΔV	0		