CONVERTING BETWEEN LINEAR AND ROTATIONAL

• There are tiny equations that "LINK" linear (aka tangential) and rotational (aka angular) variables:

LINEAR	ROTATIONAL	"LINK"
x	Θ	
$\Delta x = x - x_0$	$\Delta\Theta = \Theta - \Theta_{\circ}$	Δx = r ΔΘ
$v = \Delta x / \Delta t$	w = ΔΘ / Δt	v, _T =
a = Δv / Δt	$\alpha = \Delta w / \Delta t$	a, _T =

There are 4 types of acceleration. The equat	ion a, т = refers to	acceleration. More soon
--	-----------------------------	-------------------------

- When a Shape/Rigid Body rotates around itself, ALL rotational quantities (ΔΘ, w, α) are the same at every point.
 - Linear speeds (v,T = r w) may be different, since they depend on ______.

EXAMPLE 1: A wheel of radius 8 m spins around its central axis at 10 rad/s. Find the angular AND linear speeds at a point: (i) at the middle of the wheel (on its central axis);

- (ii) at a distance of 4 m from the wheel's center;
- (iii) at the edge of the wheel.

EXAMPLE 2: A small object rotates at the end of a light string. The object reaches 120 RPM from rest in just 4 seconds. If the object's tangential acceleration after the 4 seconds is 15 m/s², calculate the length of the string.

PRACTICE: CONVERTING BETWEEN LINEAR AND ROTATIONAL

<u>PRACTICE</u>: A disc of radius 10 m rotates around itself with a constant 180 RPM. Calculate the linear speed at a point 7 m from the center of the disc.

PRACTICE: CONVERTING BETWEEN LINEAR AND ROTATIONAL

<u>PRACTICE</u>: A rock rotates around a light, 4-m long string. The rock is initially at rest, but reaches 150 RPM in 3 seconds.

Calculate its tangential acceleration after 3 s. \rightarrow <u>BONUS</u>: Calculate its tangential speed after 3 s.

PRACTICE: ROTATIONAL KINEMATICS

<u>PRACTICE</u>: A 4 m long blade initially at rest begins to spin with 3 rad/s² around its axis, which is located at the middle of the blade. It accelerates for 10 s. Find the tangential speed of a point at the tip of the blade 10 s after it starts rotating.