CONCEPT: CYCLIC THERMODYNAMIC PROCESSES

- Cyclic process: System completes a series of steps, returns to its ______. Two important properties:
- 1) The total work done in a cyclic process is the area enclosed ______ the loop.
 - IF the loop runs clockwise,

$$W_{cyc} = [+|-]$$

- IF the loop runs counter-clockwise, \boldsymbol{W}_{cyc} = [+ |]
- Instead of using $\Delta E_{OF} = Q_{TO} W_{BY}$ for each process, use ____ = ___ multiple processes or cycles.
- 2) Because Internal Energy depends <u>only</u> on initial & final state and <u>not</u> the path taken, $\Delta E =$ ___ over a CYCLE

<u>EXAMPLE</u>: An ideal gas goes through a cyclic process shown below. **a)** Calculate the work done by the gas over the cycle. **b)** Calculate the area enclosed within the loop. **c)** If $\mathbf{Q}_{AB} = 800 \, \mathrm{J}$, $\mathbf{Q}_{BC} = 340 \, \mathrm{J}$, $\mathbf{Q}_{CD} = -600 \, \mathrm{J}$, $\mathbf{Q}_{DA} = -300 \, \mathrm{J}$ calculate the change in Internal Energy for the cycle.

ls	10-P	lso-V	lso-T	Adiabatic (Q=0)
♣		₹ P • • • • • • • • • • • • • • • • • • •	P	₹
ΔE_{int}	Q – W	$\Delta E_{int} = Q$	0	$\Delta E_{int} = -W$
Q	$nC_P\Delta T$	$nC_V\Delta T$	Q = W	0
W	PΔV	0	$nRT \cdot \ln\left(\frac{V_f}{V_i}\right)$	$\frac{-nC_V\Delta T}{\frac{1}{\gamma-1}}(P_iV_i - P_fV_f)$
				$P_i V_i^{\gamma} = P_f V_f^{\gamma}$ $T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}$

THERMO CONSTANTS $R = 8.314 \frac{J}{mol \cdot K}$

<u>PROBLEM</u>: A thermodynamic system is taken from state **A** to state **B** to state **C**, and then back to **A**, as shown in the PV diagram. Complete the table by inserting either a plus sign, a minus sign, or a zero in each indicated cell.

	Q	W	ΔE_{int}
$A \rightarrow B$			+
$B \rightarrow C$	+		
$C \rightarrow A$			

lso-P		lso-V	lso-T	Adiabatic (Q=0)
× ×		P • • • • • • • • • • • • • • • • • • •	P======	P
ΔE_{int}	Q – W	$\Delta E_{int} = Q$	0	$\Delta E_{int} = -W$
Q	$nC_P\Delta T$	$nC_V\Delta T$	Q = W	0
W	PΔV	0	$nRT \cdot \ln\left(\frac{v_f}{v_i}\right)$	$nC_V(T_i - T_f) \frac{OR}{R} $ $\frac{C_V}{R} (P_i V_i - P_f V_f)$
<u> </u>				$P_i V_i^{\gamma} = P_f V_f^{\gamma}$ $T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}$

<u>PROBLEM</u>: An ideal gas is taken through the four processes shown below. The changes in internal energy for three of these processes are as follows: ΔE_{AB} = +82 J; ΔE_{BC} = +15 J; ΔE_{DA} = -56 J. Find the change in internal energy for the process from C to D.

B) 41 J

C) -41 J

D) Cannot determine

	lso-P		Iso-P Iso-V		Adiabatic (Q=0)
	*	→	*	P======>	A Principal of the Prin
	ΔE_{int}	Q – W	$\Delta E_{int} = Q$	0	$\Delta E_{int} = -W$
٧	Q	$nC_P\Delta T$	$nC_V\Delta T$	Q = W	0
	W	PΔV	0	$nRT \cdot \ln\left(\frac{V_f}{V_i}\right)$	$nC_V(T_i - T_f) \frac{OR}{R}$ $\frac{C_V}{R} (P_i V_i - P_f V_f)$
,					$P_i V_i^{\gamma} = P_f V_f^{\gamma}$ $T V_i^{\gamma - 1} = T V_i^{\gamma - 1}$

<u>PROBLEM</u>: A gas in a closed container undergoes the cycle shown in the PV diagram. Calculate the total amount of heat added over a complete cycle.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lso-P		lso-V	lso-T	Adiabatic (Q=0)
$ \begin{array}{c cccc} Q & nC_P \Delta T & nC_V \Delta T & Q = W & 0 \\ \hline W & P \Delta V & 0 & nRT \cdot \ln\left(\frac{V_f}{V_i}\right) & \frac{nC_V (T_i - T_f)}{\frac{C_V}{R}} \left(P_i V_i - P_f V_f\right) \end{array} $	♣		*		P
$W \qquad P\Delta V \qquad \qquad 0 \qquad \qquad nRT \cdot \ln\left(\frac{V_f}{V_i}\right) \qquad \frac{nC_V(T_i - T_f)}{\frac{C_V}{R}\left(P_iV_i - P_fV_f\right)}$	ΔE_{int}	Q – W	$\Delta E_{int} = Q$	0	$\Delta E_{int} = -W$
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	Q	$nC_P\Delta T$	$nC_V\Delta T$	Q = W	0
$P_i V_i^{\ \gamma} = P_f V_f^{\ \gamma}$	W	PΔV	0	$nRT \cdot \ln\left(\frac{v_f}{v_i}\right)$	$\frac{nC_V(T_i - T_f)}{\frac{C_V}{R}} \frac{\text{OR}}{\left(P_i V_i - P_f V_f\right)}$
$T_i V_i^{\gamma-1} = T_f V_f^{\gamma-1}$					