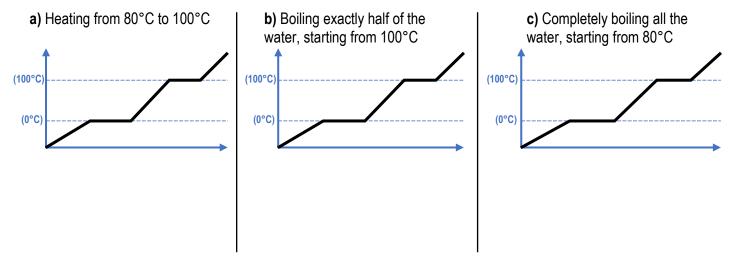

CONCEPT: LATENT HEAT & PHASE CHANGE

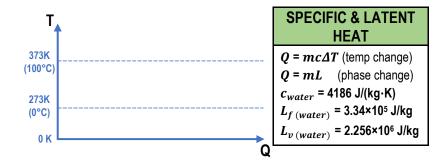
- Phase of a material = state of matter (e.g. Ice = solid; Water = liquid; Steam = gas), usually depends on temperature.
 - Remember: When a material absorbs or loses heat, it changes Temperature OR ______, but not BOTH.


• L = Latent Heat or Heat of Transformation, depends on material (per kilogram) AND phase change $\left[\frac{J}{ka}\right]$

SPECIFIC & LATENT		
HEAT PROBLEMS		
1) Draw T vs. Q graph,		
identify T _i & T _f		
2) Draw "path" from $T_i \rightarrow T_f$		
3) Write QTOTAL EQ		

4) Plug in values & solve

Substance	$\begin{array}{c} \text{Heat of Fusion (L_f)} \\ \text{(solid} \leftrightarrow \text{liquid)} \end{array}$	$\begin{array}{c} \text{Heat of Vaporization (L}_{\nu}\text{)} \\ \text{(liquid} \leftrightarrow \text{gas)} \end{array}$
Hydrogen	5.86×10 ⁴	4.52×10 ⁵
Water	3.34×10⁵	2.256×10 ⁶
Lead	2.45×10 ⁴	8.71×10 ⁵


EXAMPLE: Calculate the heat required for the following heating processes for 400g of water. Use $c_{water} = 4186 \frac{J}{K \cdot kg}$

• In problems where T_i isn't the melting/boiling temp, TOTAL Heat = heat required to change 1) temperature AND 2) phase.

PROBLEM: How much heat must be removed from 0.7 kg of water at 23°C to cool it to 0°C and completely freeze it?

- **A)** -5.31×10⁶ J
- **B)** 1.67×10⁵ J
- **C)** $-1.65 \times 10^6 \text{ J}$
- **D)** -3.01×10⁵ J

PROBLEM: If you add 5.89×10⁵ J of heat to 0.6kg of liquid water initially at 90°C, how much of the water vaporizes?

SPECIFIC & LATENT HEAT

 $Q = mc\Delta T$ (temp change) Q = mL (phase change)

 c_{water} = 4186 J/(kg·K)

 $L_{f\;(water)}$ = 3.34×10⁵ J/kg

 $L_{v\;(water)}$ = 2.256×10 6 J/kg