CONCEPT: Kepler's Third Law for Elliptical Orbits • Kepler's 3rd Law also works for elliptical orbits! Instead of orbital distance <u>r</u>, we replace it with semi-major axis <u>a</u>. Circular Orbits **Elliptical Orbits** - For circular orbits, _____. <u>EXAMPLE</u>: A planet orbits a star of mass 4×10^{30} kg in an elliptical orbit, and scientists have calculated its eccentricity to be 0.4. Its aphelion distance is 1.5×10^{11} m. What is the orbital period? | ELLIPTICAL ORBITS | CONSTANTS | |--|----------------------------| | $a = \frac{R_a + R_p}{2}$ | $G = 6.67 \times 10^{-11}$ | | $R_a = a(1+e)$ | | | $R_p = a(1 - e)$ | | | $\mathbf{T}^2 = \frac{4\pi^2 a^3}{GM}$ | | <u>PRACTICE</u>: Comet Halley has a highly elliptical orbit around the Sun, circling once every 75.6 years with its closest point to the Sun being only 0.57AU ("Astronomical Unit", where 1AU = 1.5×10^{11} m and represents the average Earth-Sun distance). How far will Comet Halley get from the Sun? | ELLIPTICAL ORBITS | CONSTANTS | |--|---| | $a = \frac{R_a + R_p}{2}$ | $G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$ | | $\mathbf{R}_{\mathbf{a}} = \mathbf{a}(1 + \mathbf{e})$ | $M_E = 5.97 \times 10^{24} \text{ kg}$ | | $R_p = a(1 - e)$ | R _E = 6.37×10 ⁶ m | | $T^2 = \frac{4\pi^2 a^3}{34\pi^2}$ | M _{Sun} = 2×10 ³⁰ kg | | GM | $R_{Sun} = 6.96 \times 10^8 \text{ m}$ | | | | EXAMPLE: A distant star is believed to be orbiting an extremely massive black hole. Careful measurements show this star moves in a highly elliptical orbit (e = 0.9) with a period of 14 years. Recently, this star reached its periapsis of 1.8×10^{13} m. What is the mass of the alleged black hole this star orbits? | ELLIPTICAL ORBITS | CONSTANTS | |--------------------------------------|--| | $a = \frac{R_a + R_p}{2}$ | $G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg·s}^2}$ | | $R_a = a(1+e)$ | M _E = 5.97×10 ²⁴ kg | | $R_p = a(1 - e)$ | R _E = 6.37×10 ⁶ m | | $\mathbf{T}^2 = \frac{4\pi^2 a^3}{}$ | $M_{Sun} = 2 \times 10^{30} \text{ kg}$ | | I — _{GM} | R _{Sun} = 6.96×10 ⁸ m | | | |