CONCEPT: Kepler's Third Law for Elliptical Orbits

• Kepler's 3rd Law also works for elliptical orbits! Instead of orbital distance <u>r</u>, we replace it with semi-major axis <u>a</u>.

Circular Orbits **Elliptical Orbits**

- For circular orbits, _____.

<u>EXAMPLE</u>: A planet orbits a star of mass 4×10^{30} kg in an elliptical orbit, and scientists have calculated its eccentricity to be 0.4. Its aphelion distance is 1.5×10^{11} m. What is the orbital period?

ELLIPTICAL ORBITS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11}$
$R_a = a(1+e)$	
$R_p = a(1 - e)$	
$\mathbf{T}^2 = \frac{4\pi^2 a^3}{GM}$	

<u>PRACTICE</u>: Comet Halley has a highly elliptical orbit around the Sun, circling once every 75.6 years with its closest point to the Sun being only 0.57AU ("Astronomical Unit", where 1AU = 1.5×10^{11} m and represents the average Earth-Sun distance).

How far will Comet Halley get from the Sun?

ELLIPTICAL ORBITS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
$\mathbf{R}_{\mathbf{a}} = \mathbf{a}(1 + \mathbf{e})$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$R_p = a(1 - e)$	R _E = 6.37×10 ⁶ m
$T^2 = \frac{4\pi^2 a^3}{34\pi^2}$	M _{Sun} = 2×10 ³⁰ kg
GM	$R_{Sun} = 6.96 \times 10^8 \text{ m}$

EXAMPLE: A distant star is believed to be orbiting an extremely massive black hole. Careful measurements show this star moves in a highly elliptical orbit (e = 0.9) with a period of 14 years. Recently, this star reached its periapsis of 1.8×10^{13} m.

What is the mass of the alleged black hole this star orbits?

ELLIPTICAL ORBITS	CONSTANTS
$a = \frac{R_a + R_p}{2}$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg·s}^2}$
$R_a = a(1+e)$	M _E = 5.97×10 ²⁴ kg
$R_p = a(1 - e)$	R _E = 6.37×10 ⁶ m
$\mathbf{T}^2 = \frac{4\pi^2 a^3}{}$	$M_{Sun} = 2 \times 10^{30} \text{ kg}$
I — _{GM}	R _{Sun} = 6.96×10 ⁸ m