CONCEPT: CALORIMETRY WITH TEMPERATURE AND PHASE CHANGES

- You'll need to know to solve calorimetry problems where a material changes temperature AND phase.
 - Heat always flows hot → cold, so only _____ obj's can change both. Hotter obj's never cool & change phase.
 - Recall: In T vs. Q graphs, use Q=mc∆T for [diagonal | horizontal] lines, Q=mL for [diagonal | horizontal] lines

<u>EXAMPLE</u>: An insulated cup contains 0.25kg of water initially at 15°C. Calculate the amount of ice (in kg), initially at –20°C, you should add to the water in order for *exactly half* the ice to melt and the final temperature of the mixture to be 0°C.

CALORIMETRY 0) Draw T vs. Q diagram, Ti's & Tf 1) Write QA = -QB, 1 Q per change Only colder materials may have >1 Q 2) Replace Q's with mcΔT OR ΔmL Write Q=mcΔT for diagonal parts Write Q=ΔmL for horizontal parts 3) Solve for Target

SPECIFIC & LATENT HEATS

HEATS $Q = mc\Delta T$ Q = mL $c_{ice} = 2100 \text{ J/(kg·K)}$ $c_{water} = 4186 \text{ J/(kg·K)}$ $L_{f,water} = 3.34 \times 10^5 \text{ J/kg (sol} \rightarrow \text{liq)}$ $L_{v,water} = 2.26 \times 10^6 \text{ J/kg (liq} \rightarrow \text{gas)}$

• If not \underline{all} the material changes phase, use Δm for _____ mass in Q= Δm L and m for _____ mass in Q= $mc\Delta T$

<u>PROBLEM</u>: You're a metalworker trying to cool a 1.6 kg chunk of iron initially at 600°C. To do this, you drip water at 20°C over it. If the chunk of iron cools down to 130°C and all of the water boils, how much (in kg) water did you drip over the iron?

CALORIMETRY

- 0) Draw T vs. Q diagram, Ti's & Tf
- 1) Write $Q_A = -Q_B$, 1 Q per change Only <u>colder</u> materials may have >1 Q
- 2) Replace Q's with mcΔT OR ΔmL Write Q=mcΔT for diagonal parts Write Q=ΔmL for horizontal parts
- 3) Solve for Target

SPECIFIC/LATENT HEAT & CALORIMETRY

 $Q = mc\Delta T$ (temp change)

Q = mL (phase change)

 c_{water} = 4186 J/(kg·K)

 c_{iron} = 470 J/(kg·K)

 $L_{f (water)}$ = 3.34×10⁵ J/kg

 $L_{v\;(water)}$ = 2.256×10 6 J/kg