CONCEPT: VECTOR COMPOSITION AND DECOMPOSITION

- You'll need to do vector math without using grids/ squares.
 - Vectors have **magnitude** (length), **direction** (angle θ_x), and **components** (legs).

VECTOR COMPOSITION

1D Components → 2D Vector (Magnitude & Direction)

- Components $A_x \& A_y$ combine \rightarrow magnitude \vec{A}
 - Points in direction $oldsymbol{ heta}_{x}$

VECTOR COMPOSITION $A = \sqrt{A_x^2 + A_y^2}$ $\theta_x = \underline{\hspace{1cm}}$

VECTOR DECOMPOSITION

2D Vector (Magnitude & Direction) → 1D Components

- ullet Use **SOH-CAH-TOA** to decompose \overrightarrow{A} ocomponents A_x & A_y .
 - Angle θ_x must be drawn to nearest _____

VECTOR DECOMPOSITION

$$A_x = \underline{\hspace{1cm}}$$

$$A_y = \underline{\hspace{1cm}}$$

EXAMPLE: For each of the following, draw the vector and solve for the missing variable(s).

a)
$$A_x = 8m$$
, $A_y = 6m$, $A_z = ?$ $\theta_x = ?$

b) B = 13m,
$$\theta_x$$
 = 67.4°, B_x = ? B_y = ?

EXAMPLE: A vector **A** has y-component of 12 m makes an angle of 67.4° with the positive x-axis. (a) Find the magnitude of **A**. (b) Find the x-component of the vector.

Vector	Vector
Composition	Decomposition
(Components→Vector)	(Vector→Components)
$A = \sqrt{{A_x}^2 + {A_y}^2}$	$A_{x} = A \cos(\theta_{X})$
$\theta_X = \tan^{-1}\left(\frac{A_y}{A_x}\right)$	$A_{y} = A \sin(\theta_{X})$