CONCEPT: Hooke's Law & Springs

• When you push/pull against a spring (F_A), spring pushes back in the _____ direction. (Action-Reaction!)

<u>Ex. 1</u>: You push on a spring with a force of 120N. The spring constant k is 20. How much does it compress?

Ex. 2: How much force is required to pull a spring of length 10m out to 16m, if the spring constant k is 40N/m?

F _S = -F _A =	\rightarrow	F _s = F _A =

- x = D_____
 - Relaxed position → _____ (x = ___)
 - NOT the spring's length \rightarrow (x = ____)
- k = spring's force constant
 - Measures how _____ the spring is.
 - Higher $k \rightarrow$ ______ to deform

- Ex. 1:
$$x = k = F =$$

- Ex. 2:
$$x = k = F =$$

- Units of **k**: _____

• F_S = R______ force, always opposes deformation

CONCEPT: WORK DONE BY SPRINGS

- For **CONSTANT** Forces only, we calculate Work using **W=Fdcosθ**
 - For <u>VARIABLE</u> (i.e. not constant) Forces, we use the _____ of the Force instead \Rightarrow $W_{var} = \Delta x cos\theta$
- The most common variable force you'll see is the **Spring** Force (Hooke's Law) \Rightarrow $F_s = -F_A = -kx$
 - Work Done BY SPRING when compressing: $W_S = -W_{F_A} =$

EXAMPLE: You push a light box attached on a spring with a spring constant k = 500N/m. If you compress the spring by 2m, (a) write an expression for the work done by your push and the spring; (b) Calculate the work done by you & the spring.

<u>PROBLEM</u>: It takes 200 J of energy to compress a 1.0 m-long spring to 70 cm. How much additional work would you have to do to compress this same spring from 70 cm to 50 cm?

WORK & ENERGY

$$KE = \frac{1}{2}mv^2$$

$$W = Fdcos\theta$$

$$W_g = -mg\Delta y$$

$$W_g$$
 = $-mg\Delta y$
 $W_{FA} = -W_s$ = $-\frac{1}{2}k\Delta x^2$
 W_{NET} = ΣW = $F_{NET}d\cos\theta$ = ΔK

$$W_{NET} = \Sigma W = F_{NET} d\cos\theta = \Delta K$$

In general, the work done ON or BY a spring between two points A→B:

$$W_{s,A\to B}$$
 = _____