CONCEPT: INTRO TO DIELECTRICS

- ullet Dielectric: Insulator between charged plates [INCREASES | DECREASES] capacitance: $\mathcal{C}=\kappa\mathcal{C}_0$
 - DIELECTRIC CONSTANT κ ≥ 1 (no units!)
 - Always [STRENGTHEN | WEAKEN] Electric Fields $\to E = E_0/\kappa$

CONSTANT CHARGE (Q)	CONSTANT VOLTAGE (V)
- No battery connected	- Inserted when battery still connected
$-Q = C V \longrightarrow V$	$-V = Q / C \longrightarrow Q$
$-U = \frac{1}{2}Q^2 / C \rightarrow U \underline{\hspace{1cm}}$	$-V = Q / C \longrightarrow Q$ $-U = \frac{1}{2}C V^2 \longrightarrow U$
$-u = \frac{1}{2}\epsilon_0 E^2 \qquad \to u \ \underline{\hspace{1cm}}$	$-u = \frac{1}{2}\epsilon_0 E^2 \longrightarrow u \underline{\hspace{1cm}}$
	Т

EXAMPLE: A capacitor is connected to a battery as shown below. What is the charge on the capacitor after a dielectric $(\kappa = 2)$ is inserted into the capacitor while it is *still* connected to the battery?

EXAMPLE: CAPACITOR WITH A DIELECTRIC

A capacitor in a vacuum is charged to 64V between its plates, then disconnected. Initially, each plate has 32μ C. An insulating slab of dielectric glass with κ = 3 is placed between the plates. a) What is the capacitor's new capacitance? b) What is the new voltage across the capacitor?

PRACTICE: CIRCULAR PLATE CAPACITOR WITH DIELECTRIC

A parallel plate capacitor is formed by bringing two circular plates, of radius 0.5 cm, to a distance of 2 mm apart. The capacitor is made so that it has a dielectric of constant κ between the plates. When the charge on the capacitor is 3 nC, the voltage of the capacitor is 5000 V. What is the dielectric constant?

EXAMPLE: CAPACITORS PARTIALLY FILLED WITH DIELECTRIC

What is the new capacitance of the two capacitors that are partially filled with dielectrics shown in the following figure?

(b)

