CONCEPT: Energy in Simple Harmonic Motion

- At any point of SHM, the mass-spring system may have 2 types of Energy: _______+
 - W_{nc} = _____, so the Mechanical Energy (M.E.) is ______.

Energy Conservation → always compare energies at 2 special points:

Amplitude:

x = ____

Kinetic Energy (K_A) = $\frac{1}{2}mv^2$ = _____

Total M.E. =

Equilibrium:

x = ____

Elastic Energy (U_A) = $\frac{1}{2}kx^2$ = _____ Elastic Energy (U₀) = $\frac{1}{2}kx^2$ = _____

Kinetic Energy (K₀) = $\frac{1}{2}mv^2$ = _____

Total M.E. =

Any other Point:

x = ____

Elastic Energy (U_P) = $\frac{1}{2}kx^2$ = _____

Kinetic Energy (K_P) = $\frac{1}{2}mv^2$ = _____

Total M.E. = _____

Comparing all these energies at different points:

$$U_A = K_0 = U_P + K_P$$

$$= \underline{\hspace{1cm}} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \qquad \rightarrow \qquad v(x) = \underline{\hspace{1cm}}$$

(Energy Conservation for Springs)

EXAMPLE 1: A 5 kg mass oscillates on a horizontal spring with k = 30[N/m] and an amplitude of 0.4 m. Find its (a) max speed, (b) speed when it is at -0.2 m, and (c) the total mechanical energy of the system.

EXAMPLE: A 0.25-kg mass oscillates on a spring with a period of 3.2s. At x=0.4m, it is observed to have a speed of 5m/s. What is the system's (a) Amplitude and (b) total mechanical energy?

$$\omega = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$$

$$N \text{ [cycles]} = \frac{t \text{ [time]}}{T \text{ [Period]}} = t * f$$

$$N \text{ [cycles]} = \frac{t \text{ [time]}}{T \text{ [Period]}} = t * f$$

$$M.E. = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}^2 = \frac{1}{2}kx_p^2 + \frac{1}{2}mv_p^2$$

$$v(x) = \omega_0 \sqrt{A^2 - x^2}$$

<u>PRACTICE</u>: A block of mass 0.300 kg is attached to a spring. At x = 0.240 m, its acceleration is $a_x = -12.0$ m/s² and its velocity is $v_x = -12.0$ m/s 4.00 m/s. What are the system's (a) force constant k and (b) amplitude of motion?

Mass-Spring SHM Equations	
$ F_S = F_A = kx$	$\rightarrow F_{\text{max}} = \pm kA$
$a = -\frac{k}{m}x$	$\rightarrow a_{\text{max}} = \pm \frac{k}{m} A$
$x(t) = + A \cos(\omega t)$	\rightarrow x _{max} = \pm A
$v(t) = -A\omega \sin(\omega t)$	\rightarrow V _{max} = \pm A ω
$a(t) = -A\omega^2 \cos(\omega t)$	\rightarrow a _{max} = \pm A ω ²
$\omega = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$	
$N [\text{cycles}] = \frac{t [\text{time}]}{T [\text{Period}]} = t * f$	
$M.E. = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}^2 = \frac{1}{2}kx_p^2 + \frac{1}{2}mv_p^2$	
$v(x) = \omega \sqrt{A^2 - x^2}$	

EXAMPLE: You increase the amplitude of oscillation of a mass vibrating on a spring. Which statements are correct?

- (a) Period of oscillation increases
- (b) Maximum acceleration increases
- (c) Maximum speed increases

- (c) Max Kinetic Energy increases
- (d) Max Potential Energy increases
- (e) Max Total Energy increases

