CONCEPT: ELECTRIC CHARGE

• Atoms are made of protons, neutrons and electrons.

• ELECTRIC CHARGE is a property of matter, similar to MASS:

MASS (m)	ELECTRIC CHARGE (Q)
- Mass → Gravitational Force	- Electric Charge → Electric Force
- More Mass → More Gravity	- More Charge $ ightarrow$ More Electric Force
- Mass → ONLY	- Charge → and

• ELEMENTA	RY charge
------------	-----------

C C		
	α –	C

The CHARGE of an object is the quantity of _______

of protons and electrons in it:

• Notice these charges are in WHOLE MULTIPLES of e.

- MOST materials are NEUTRAL \rightarrow #Protons _____ #Electrons \rightarrow Q_{net} = ____

PRACTICE: CHARGE OF ATOM

What is the charge of an atom with 16 protons and 7 electrons?

EXAMPLE: NUMBER OF ELECTRONS

How many electrons make up -1.5×10^{-5} C?

EXAMPLE: ELECTRONS IN WATER

- a) How many electrons does 2L of water have?
- b) What charge do these electrons represent?

PRACTICE: ADDING ELECTRONS

How many electrons do you have to add to decrease the charge of an object by $16\mu C$?