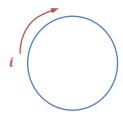

CONCEPT: SELF INDUCTANCE

- A current-carrying wire can induce an EMF ______ through changes in magnetic flux!
 - Φ_{Total} depends on **N** and magnetic field \overrightarrow{B} , which depends on _____.
 - Φ_{B} is _____ to i.

→ _____


• L is a proportionality constant called the SELF INDUCTANCE

$$L =$$
 \longrightarrow UNITS: Henry [H] \longrightarrow 1 H = 1 ____ / ____

- depends only on the # of turns and the shape of the coil! (i cancels out)
- We can write the self-induced EMF using Faraday's Law OR in terms of the self-inductance L:

$$\varepsilon = -N \frac{\Delta \Phi_B}{\Delta t} = -$$

EXAMPLE: What is the expression for the self-inductance of a single current-carrying loop of wire with radius r?

PRACTICE: SELF-INDUCTING COIL OF WIRE

A single loop of wire with a current of 0.3A produces a flux of 0.005 Wb. If the self-induced EMF on this loop is 10 mV, how quickly must the current be changing?

EXAMPLE: SELF-INDUCTANCE OF A TOROIDAL SOLENOID

A toroidal solenoid has 500 turns, cross-sectional area of 6.25cm², and mean radius of 4cm. **a)** What is the self-inductance of this toroidal solenoid? **b)** If the current decreases constantly from 5A to 2A in 6ms, what is the induced EMF in the coil?