CONCEPT: VECTOR (CROSS) PRODUCT USING COMPONENTS

• Sometimes you'll need to calculate $\vec{A} \times \vec{B}$ using unit vector components, instead of $|A||B|\sin\theta$

- Vector product creates a new vector $\overrightarrow{\textbf{\textit{C}}} \rightarrow$ we need a way to calculate its _____.

Vector Product

$$\vec{A} = A_{x}\hat{\imath} + A_{y}\hat{\jmath} + A_{z}\hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$

$$\vec{C} = \vec{A} \times \vec{B} = \underline{\hspace{1cm}}$$

Scalar Product

$$\vec{A} = A_{x}\hat{\imath} + A_{y}\hat{\jmath} + A_{z}\hat{k}$$

$$\vec{B} = B_{x}\hat{\imath} + B_{y}\hat{\jmath} + B_{z}\hat{k}$$

$$\vec{A} \cdot \vec{B} = (A_x B_x) + (A_y B_y) + (A_z B_z)$$

EXAMPLE: Write $\vec{A} \times \vec{B}$ in terms of its unit vector components, if $\vec{A} = \hat{\imath} + 2\hat{\jmath}$ and $\vec{B} = -2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$

	х	у	Z	X	у
\vec{A}					
\overrightarrow{B}					

CROSS PRODUCT USING COMPONENTS

- 1) Bulild table of \vec{A} & \vec{B} 's x,y,z,x,y $(\hat{i},\hat{j},\hat{k})$ components
- 2) Write A B B A for each component
- 3) Always multiply _____ components diagonally (CROSS product), first ____ and then ____

• Putting this all together, you get
$$\vec{C} = \vec{A} \times \vec{B} = (\underline{\hspace{1cm}})\hat{\imath} + (\underline{\hspace{1cm}})\hat{\jmath} + (\underline{\hspace{1cm}})\hat{\jmath}$$

PROBLEM: Vector $\vec{A} = 4\hat{\imath} + 3\hat{\jmath}$ and $\vec{B} = -2\hat{\imath} + 3\hat{\jmath}$.

- a) Find the magnitude and direction of $\vec{C} = \vec{A} \times \vec{B}$ using $ABsin(\theta)$ and the Right-Hand-Rule.
- b) Write $\vec{C} = \vec{A} \times \vec{B}$ in terms of unit vector components and calculate the magnitude of \vec{C} .

CROSS PRODUCT USING COMPONENTS

- 1) Bulild table of \overrightarrow{A} & \overrightarrow{B} 's x,y,z,x,y $(\hat{\imath},\hat{\jmath},\widehat{k})$ components
- 2) Write A B B A for each component
- 3) Always multiply "unlike" components diagonally (CROSS product), first \(\sigma\) and then \(\times\)