CONCEPT: INTRO TO HEAT ENGINES

• Heat Engine: Machine that converts _____ into useful ____ (e.g. a car engine!)

Hot Reservoir: Source of heat energy (Q_H) going *INTO* engine (burning gasoline)

Work: <u>Usable</u> energy (W) produced BY engine (turning wheels of car)

Cold Reservoir: Wasted heat energy (Q_C) expelled OUT from engine (exhaust pipe)

ullet Remember: ΔE_{int} = Q-W, and in cyclic processes, ΔE_{int} = $oldsymbol{0}$, so W_{cyc} = Q_{cyc}

- Heat Engines are ALWAYS cyclic, and heat flows IN and OUT over a cycle:

EXAMPLE: A heat engine takes in 500J of heat and does 300J of work. How much waste heat is expelled from the engine?

Energy-Flow Diagram

Reservoir

HEAT ENGINE

Reservoir

<u>PROBLEM</u>: An aircraft engine takes in 9 kJ of heat and expels 6.4 kJ of heat each cycle. How much mechanical work does the engine do each cycle?

- **A)** 15.4 kJ
- **B)** 2.6 kJ
- **C)** 2.6 J
- **D)** 6.4 kJ

HEAT ENGINES

 $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$

<u>PROBLEM</u>: A gasoline engine takes in 1.6×10^4 J of heat from gasoline combustion and does 3700 J of work per cycle. Gasoline has a latent heat of combustion $L_C = 4.6 \times 10^7$ J/kg. **a)** How much heat is expelled each cycle? **b)** What mass of fuel is burned each cycle? **c)** If the engine completes 60 cycles/sec (3600 RPM), what is its power output in kW?

HEAT ENGINES $\Delta E_{int} = 0$

 $|W| = |Q_H| - |Q_C|$ Q = mL

<u>PROBLEM</u>: A heat engine uses a tank of ice water as a cold reservoir. The engine takes in 8 kJ of heat from the hot reservoir, and the heat expelled melts 18g of ice in the tank. How much work does this engine do?

- **A)** 14,012 J
- **B)** 6012 J
- **C)** 1,988 J
- **D)** 8000 J

HEAT ENGINES

 $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$ Q = mL $L_f = 3.34 \times 10^5 \text{ J/kg}$

CONCEPT: THERMAL EFFICIENCY AND THE SECOND LAW OF THERMODYNAMICS

• Remember: Heat engines produce Work using heat energy flowing from the Hot reservoir to the Cold Reservoir.

-The engine's **thermal efficiency** (__) is how _____ it is at producing Work from Heat: $e = --- (\times 100\%) = 1 - ---$

EXAMPLE: For the following examples below, calculate the missing variable(s).

• The Second Law of Thermodynamics has multiple "statements".

<u>Second Law of Thermodynamics – Kelvin / "Engine" Statement</u>

It is ______ to convert Q_H→W with 100% efficiency. Engines must expel waste heat to the cold reservoir.

<u>PROBLEM</u>: A steam turbine takes in 75g of water and boils it as heat energy to run a 40% efficient engine. How much work does this engine do per cycle?

- **A)** 67,800 J
- **B)** 1.695×10⁵ J
- **C)** 10,020 J
- **D)** 4.24×10⁵ J

HEAT ENGINES

 $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$ $e = \frac{w}{Q_H} = 1 - \frac{Q_C}{Q_H}$ Q = mL $L_f = 3.34 \times 10^5 \text{ J/kg}$ $L_v = 2.26 \times 10^6 \text{ J/kg}$

<u>PROBLEM</u>: A nuclear power plant produces 250 MW of power, and expels 550 MW out to the surrounding environment. What is the thermal efficiency of this power plant?

HEAT ENGINES

 $\Delta E_{int} = 0$ $|W| = |Q_H| - |Q_C|$ $e = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$

• The efficiency equation does <u>not</u> depend on time, so you can use it when given units of power [W] instead of energy [J].