CONCEPT: THE FIRST LAW OF THERMODYNAMICS

• The First Law of Thermodynamics is an equation relating Internal Energy, Heat, and Work.

 $\Delta E_{int,OF}$ = Change in Internal Energy <u>OF</u> the system/gas

 Q_{TO} = Heat added \underline{TO} / removed \underline{FROM} the system/gas

 W_{BY} = Work done <u>BY</u> the system/gas

<u>EXAMPLE</u>: What is the change in internal energy of a gas if the work done on the environment by the gas is 200J, and you add 500 J of heat to the gas?

Internal Energy can be changed in two ways: through _____ and/or ____

* only if pressure is constant

If heat is <u>added</u>, Q is [+|-], E_{int} [increases | decreases] If heat is <u>removed</u>, Q is [+|-], E_{int} [increases | decreases] If gas <u>expands</u> $(\Delta V \uparrow)$, $W_{BY} = [+|-]$, E_{int} [increases | decreases] If gas is <u>compressed</u> $(\Delta V \downarrow)$, $W_{BY} = [+|-]$, E_{int} [increases | decreases]

EXAMPLE: You put gas inside a sealed container with a moveable piston, then remove 240 J of heat from it. The pressure in the container is 100 Pa. Calculate ΔE_{int} if the gas expands from a volume of 1m³ to 3m³. Assume pressure is constant.

<u>PROBLEM</u>: A gas in a cylinder held at a constant pressure 1.80×10^5 Pa expands from a volume of 1.2 m^3 to 1.6 m^3 . The internal energy of the gas decreases from 4.40×10^5 J to 3×10^5 J. How much heat was transferred to the gas?

- **A)** -6.8×10⁴ J
- **B)** 2.12×10⁵ J
- **C)** 4.72×10⁵ J
- **D)** 2.28×10⁵ J

THERMO EQs

 $W_{BY} = P\Delta V$ (constant P)

CONCEPT: ALTERNATE EQUATION FOR THE FIRST LAW OF THERMODYNAMICS

• You may see the 1st Law of Thermo EQ written a different way.

, where
$$W_{BY}$$
 = Work done BY the system/gas , where W_{ON} = Work done ____ the system/gas ___ = ___

<u>EXAMPLE</u>: You fill a container with gas and add 300J of heat. The gas has constant pressure of 100 Pa. You put your hand on a moveable piston attached to the container and push inward, compressing the gas from 5m³ to 3m³.

- a) Calculate the work done by the gas on your hand.
- **b)** Calculate the work done <u>on</u> the gas from your hand.

c) Calculate the change in Internal Energy of the gas using both "forms" of the 1st Law of Thermo equation.

<u>PROBLEM</u>: The internal energy of a system decreases by 500 J, and 230 J of work is done *on* the system. How much heat was added to this system?

- **A)** 730 J
- **B)** 270 J
- **C)** -270 J
- **D)** -730 J

THERMO EQs

 $W_{BY} = P\Delta V$ (constant P)

<u>PROBLEM</u>: The internal energy of a monoatomic ideal gas is given as $E = \frac{3}{2}nRT$, where n is the # of moles and T is the temperature. If you add 1300 J of heat to 1.5 moles of a monoatomic gas, and its temperature increases from 270 to 320K, how much work was done by the gas?

THERMO EQs & CONSTANTS

 $W_{BY} = P\Delta V$ (constant P)

 $R = 8.314 \frac{J}{mol \cdot K}$