CONCEPT: TOTAL INTERNAL REFLECTION

• Remember: When light enters a material with a *lower* index of refraction *n*, it bends *away* from the normal.

- At a **critical angle** (θ_{crit}) of incidence, the refracted ray is ______ to the surface, so θ_2 = _____.
 - For angles > θ_{crit} , light is **NOT** refracted but totally _____ inward. This is called <u>Total Internal Reflection</u>.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 \Rightarrow _____ = ____ (Critical Angle)

- Total internal Reflection happens only when $oldsymbol{n_2} \quad oldsymbol{n_1}$

<u>EXAMPLE</u>: In the image above, Material 1 is glass and Material 2 is air. What is the angle for which light will be totally reflected inward?

INDEX OF REFRACTION FOR COMMON MATERIALS	
Vacuum/Air	1
Water	1.33
Glass	1.46