
Topic Resource: Choosing a Factoring Method

Repeat this process with each non – prime factor.

- If you take a linear equation and add an _____ term, you get a quadratic equation!
 - Also called a polynomial of degree 2.

$$2x - 6 = 0$$

• You will often need to write quadratic equations in standard form.

$$ax^2 + bx + c = 0$$

■ All terms are on the **same** side in *descending* order of ______.

 $\underline{\mathsf{EXAMPLE}}$: Write each given quadratic equation in standard form. Identify a,b, and c.

 $(A) 5x^2 = x - 3$

$$c =$$

 $-2x^2 + \frac{5}{3} = 0$

$$c =$$

PRACTICE: Write the given quadratic equation in standard form. Identify a,b, and c.

$$-4x^2 + x = 8$$

Factoring

- To **solve** a quadratic equation, we want to find every value of _____ that makes the equation _____.
 - There are often ____ correct values of x, which we call the **solutions**, **roots**, or **zeros**.

Solving Linear Equations

$$2x - 6 = 0$$

$$2x = 6$$
$$x = 3$$

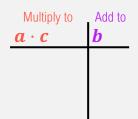
$$x = 3$$

Solving Quadratic Equations

$$x^2 - 5x + 4 = 0$$

- We will need to use something else to solve quadratic equations:
- One way to solve a quadratic equation is to **factor** from standard form, then set each factor equal to ____.

$$x^{2} + x - 6 = 0$$


$$(x+3)(x-2) = 0$$

$$0$$

• If the factors multiplied = 0, one of the factors must = 0 to make this true.

EXAMPLE: Solve the given quadratic equation by factoring.

$$x^2 - 9x = -20$$

FACTORING QUAD. EQNS

- 1) Write eqn in _____ form
- 2) _____ completely
- 3) Set factors = $_$, solve for x
- 4) Check solutions in original eqn

PRACTICE: Solve the given quadratic equation by factoring.

$$3x^2 + 12x = 0$$

FACTORING QUAD. EQNS

- 1) Write eqn in standard form
- 2) Factor completely
- **3)** Set factors = 0, solve for x
- 4) Check solutions

PRACTICE: Solve the given quadratic equation by factoring.

$$2x^2 + 7x + 6 = 0$$