Graphing Rational Functions Using Transformations

• We can graph many rational functions by applying rules of transformations to $\frac{1}{x}$

EXAMPLE: Graph the given function as a transformation of $f(x) = \frac{1}{x^2}$

PRACTICE: Graph the rational functions using transformations.

(A)

PRACTICE: Graph the rational functions using transformations.

(B)

	$g(x) = \frac{1}{(x+3)^2} - 2$
	1) Plot VA at $x = h$: $x =$
품	2) Plot HA at $y = k$: $y =$
TO GRAPH	3) a. Reflect? $\Box \to (1,1) (-1,1)$ over $[x \mid y]$
10	b. Shift test points by (,)
	4) Sketch curves approaching asymptotes
APH	Domain: (,) ∪ (,)
FROM GRAPH	Range: ()
#	

How to Graph Rational Functions

• To graph a rational function, determine vertical & horizontal asymptotes, x & y-intercepts, and holes.

	$f(x) = \frac{2x - 3}{x - 1}$
	$x-1$ 1) Factor & find Domain \rightarrow Set Denom. = 0
	$x - 1 = 0 \qquad \{x x \neq \underline{\hspace{1cm}}\}$
	2) Holes \rightarrow a. Set Common Factor(s) = 0:
	b. Put in Lowest Terms
	3) x-int(s) & behavior \rightarrow Set Num. = 0 (to solve $f(x) = 0$)
	$2x - 3 = 0$ $x = \qquad \qquad$
	EVEN ODD [TOUCH CROSS]
	4) y-int \rightarrow Compute $f(0)$:
TO GRAPH	$f(0) = \frac{2(0) - 3}{0 - 1} =$
	5) Vertical Asymptote(s) → Set Denom. = 0
	$x-1=0 x=\underline{\hspace{1cm}}$
	6) Horizontal/Slant Asymptote(s) $\frac{2x-3}{x-1}$
	Deg. Num. [$<$ $=$] Deg. Denom $x-1$
	$y = [0 \mid \text{divide lead coeff}] \rightarrow $
	7) Determine intervals & plot a point in each
	x
	f(x)
	8) Connect & draw approaching asymptotes

- Recall: Find behavior between known components by breaking graph into ______.
 - Use vertical asymptote(s) & x-intercept(s) to form intervals.

EXAMPLE: Graph the rational function.

	$f(x) = \frac{2x^2}{x^2 - 1}$
	1) Factor & find Domain → Set Denom. = 0
	$\{x x \neq \underline{\hspace{1cm}}\}$
	2) Holes \rightarrow a. Set Common Factor(s) = 0:
	b. Put in Lowest Terms
	3) x-int(s) & behavior \rightarrow Set Num. = 0
	<i>x</i> =
	Multiplicity:
	EVEN ODD [TOUCH CROSS]
TO GRAPH	4) y-int \rightarrow Compute $f(0)$:
	5) Vertical Asymptote(s) → Set Denom. = 0
	x =
	6) Horizontal/Slant Asymptote(s)
	Deg. Num. [$<$ $=$] Deg. Denom
	$y = [0 \mid \text{divide lead coeff}] \rightarrow \underline{\hspace{1cm}}$
	7) Determine intervals & plot a point in each
	x
	f(x)
	8) Connect & draw approaching asymptotes

<u>PRACTICE</u>: Graph the rational function.

	$f(x) = \frac{x+3}{x^2 + 5x + 6}$
	1) Factor & find Domain → Set Denom. = 0
	$\{x x \neq \underline{\hspace{1cm}}\}$
	2) Holes → a. Set Common Factor(s) = 0:
	b. Put in Lowest Terms
	3) x-int(s) & behavior \rightarrow Set Num. = 0
	<i>x</i> =
	Multiplicity:
	EVEN ODD
	[TOUCH CROSS]
TO GRAPH	4) y-int \rightarrow Compute $f(0)$:
0	5) Vertical Asymptote(s) → Set Denom. = 0
	x =
	6) Horizontal/Slant Asymptote(s)
	Deg. Num. [< =] Deg. Denom
	$y = [0 \mid \text{divide lead coeff}] \rightarrow _$
	7) Determine intervals & plot a point in each
	~
	x
	f(x)
	8) Connect & draw approaching asymptotes

