

TOPIC: DEFINING THE UNIT CIRCLE

Introduction to the Unit Circle

◆ Unit Circle: Circle of radius 1 relating angles from 0 to 360° (or ____ radians) to x & y values. Centered at (_____ , ____).

Recall	Circle	
(x -	$h)^2 + (y - k)^2 = r^2$	

EXAMPLE Identify which points are on the unit circle and label them on the graph.

(A) $(1,1) \qquad \qquad \hbox{[ON | NOT ON] unit circle}$

(B) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ [ON | NOT ON] unit circle

PRACTICE Identify the quadrant that the given angle is located in.

$$(A)$$
 $\frac{7\pi}{4}$ radians

Quadrant: _____

$$(\boldsymbol{B})$$
 $\frac{\pi}{7}$ radians

Quadrant: ____

$$(C)$$
 $\frac{2\pi}{3}$ radians

Quadrant: ____

$$(\textbf{\textit{D}})$$
 $\frac{6\pi}{5}$ radians Quadrant: ____

TOPIC: DEFINING THE UNIT CIRCLE

PRACTICE

Test whether the point is on the unit circle by plugging it into the equation.

$$\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$$

New	Unit Circle	
	$x^2 + y^2 = 1$	