
Introduction to Systems of Linear Equations

- ◆ Previously, we solved & plotted *single* equations on graphs. Now we'll look at **Systems of (_____) Equations**.
 - ▶ To solve, find (x, y) which satisfy _____ equations. Graphically, this is where the lines _____.

New

Multiple Equations a.k.a "System"

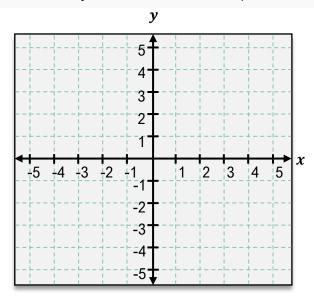
EXAMPLE

Determine if each point is a solution to the equation.

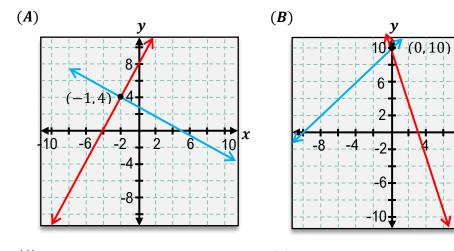
$$(A)$$
 (B) (C) $(-2,0)$ $(0,-4)$ $(1,4)$

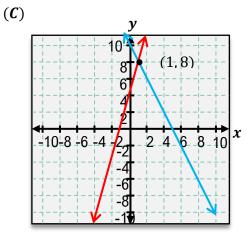
Solution: [1 | MANY] point(s) satisfying [1 | ALL] line(s)

Determine if each point is a solution to the system of equations.


(A)
$$(B)$$
 (C) $(1,4)$

Solution: [1* | MANY] point(s) satisfying [1 | ALL] line(s)


^{*} True for *most* problems, but there are other types of solutions


EXAMPLE Graph the system of equations. Identify the intersection point and verify it is a solution to both equations.

$$y = 2x + 3$$
$$y = x + 4$$

EXAMPLE Match each system of equations to its graph and solution.

$$y = 3x + 5$$
$$y = -2x + 10$$

$$y = 4x + 8$$
$$2x + 3y = 10$$

$$3x + y = 10$$
$$-x + y = 10$$

Solving Systems of Linear Equations – Substitution

◆ One way to solve systems of equations *without* graphing is by ______ one equation into another.

EXAMPLE

Solve the system of equations using substitution.

$$y = 7x - 14$$

$$2x - y = 4$$

HOW TO: Solve Systems of Equations – Substitution

- 1) Choose easiest equation to isolate x or y as (A)
- 2) Solve (A) for $x ext{ OR } y$
- 3) Substitute (A) into (B), then solve (B)
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eqn's

PRACTICE

Use substitution to solve the following system of linear equations.

$$4x + y = 1$$
$$x - y = 4$$

PRACTICE Use substitution to solve the following system of linear equations.

$$4x + 2y = 7$$
$$x + 5y = 4$$

HOW TO: Solve Systems of Equations – Substitution

- 1) Choose easiest equation to isolate x or y as (A)
- 2) Solve (A) for $x ext{ OR } y$
- 3) Substitute (A) into (B), then solve (B)
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eqn's

Solving Systems of Linear Equations – Elimination

- ◆ Another way to solve systems of equations is by _____ the equations & _____ a variable.
 - ▶ If not asked to use a specific method, use this when equations are in standard form or have large coefficients.

$$(Ax + By = C)$$

Recall Substitution	New	Elimination	
y = 5x - 3		x + y = 1	
x = 2		-x + y = 5	

EXAMPLE

Solve the system of equations using elimination.

$$3x + 2y = 1$$

$$-x + y = 3$$

HOW TO: Solve Systems of Equations - Elimination

- 1) Write BOTH equations in the form Ax + By = C, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are ____ with ____ signs
- 3) _____ equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eqn's

How to Multiply Equations in Elimination Method

◆ To determine what # to multiply by in Step 2), look at the coefficients of each equation.

Elimination Method – What to Multiply Equation(s) by to Eliminate Variable					
If coefficients of x or y are	Equal with OPPOSITE sign	Equal with SAME sign	Factors of each other (Evenly divisible)	Anything Else	
Multiply	Nothing! Just add	Either eq'n by -1	Eq'n with smaller coeff's by quotient	Each eq'n by <i>other</i> coeff (+ or -)	
EXAMPLE	7x + 13y = 12 $-7x + 2y = 18$	5x + 7y = 17 $6x + 7y = 12$	12x - 5y = 24 $3x - 2y = 6$	6x + 2y = -10 $-4x - 3y = 15$	

HOW TO: Solve Systems of Equations - Elimination

- 1) Write BOTH equations in the form Ax + By = C, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are **EQUAL** with **OPPOSITE** signs
- 3) ADD equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eq'ns

EXAMPLE Without fully solving, multiply one or both equation(s) by an appropriate factor to cancel out a variable.

Elimination Method – What to Multiply Equation(s) by to Eliminate Variable					
If coefficients of x or y are	Equal with OPPOSITE signs	Equal with SAME signs	Factors of each other (Evenly divisible)	Anything Else	
Multiply	Nothing! Just add	Either eq'n by -1	Eq'n with smaller coeff's by quotient	Each eq'n by <i>other</i> coeff (+ or -)	

$$2x + 3y = 1$$
$$x - y = 3$$

EXAMPLE Without *fully* solving, multiply one or both equation(s) by an appropriate factor to cancel out a variable.

$$5x + 3y = 10$$
$$-7x + 5y = 15$$

PRACTICE Use the elimination method to solve the following system of linear equations.

$$2x + y = 1$$
$$3x - y = 4$$

HOW TO: Solve Systems of Equations – Elimination

- 1) Write *BOTH* equations in the form Ax + By = C, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are EQUAL with OPPOSITE signs
- 3) ADD equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eqn's

PRACTICE

Use the elimination method to solve the following system of linear equations.

$$10x - 4y = 5$$
$$5x - 4y = 1$$

Classifying Systems of Linear Equations

Like linear equations, systems can be put in 3 categories based on the ______ of solutions they have.

EXAMPLE

Solve each system of equations. Then graph and categorize the system.

Consistent		Inconsistent
Independent	Dependent	
y = 3	-x - y = -2	y = -x + 3
x + y = 2	x + y = 2	x + y = 2
y -4-3-2-1-1-1-12-3-4	y -4-3-2-1-1-1-2-3-4-x	y -4-3-2-1-1-1-2-3-4-x -4-3-2-1-1-1-2-3-4-x
Lines are	Lines are	Lines are
[1 ∞ 0] Solutions	[$1 \mid \infty \mid 0$] Solutions	[1 ∞ 0] Solutions

PRACTICE

Solve the following system of equations. Classify it as CONSISTENT (INDEPENDENT or DEPENDENT) or INCONSISTENT.

$$y = 5x - 17$$
$$15x - 3y = 51$$

PRACTICE

Solve the following system of equations. Classify it as CONSISTENT (INDEPENDENT or DEPENDENT) or INCONSISTENT.

$$2x + 8y = 7$$
$$x + 4y = 19$$