Parameterize Equations

- Often you'll be given an eq'n with only x & y and be asked to write $x(t) \& y(t) \rightarrow$ "parameterize".
 - Choose a t (avoid domain restrictions), solve for x(t), then _____ into original eq'n to find y(t).

Recall Eliminate the Parameter	New Parameterize Equations	
x(t) = t - 1 $y = 4(x + 1)$	$t = \begin{cases} x(t) = \\ y(t) = \\ 0 \end{cases}$	$t = x$ $t = \# \cdot x,$ $t = x \pm \#$
y(t) = 4t	$ \begin{aligned} t &= \\ x(t) &= \\ y(t) &= \end{aligned} $	$t = # \cdot x^2$ $t = \sqrt{x}$

EXAMPLE

Without choosing x(t) = t, find parametric equations for the rectangular equation.

(A)y = 2x + 5

$$t = x + 1$$

(B)

$$y = (x+2)^2 - 3$$

- 1) Define t, unless given

 Try t = x, or $t = (\underline{})$ if () in eq'n
- **2)** Solve for x(t)
- 3) Plug x(t) into original eq'n for x
- 4) Solve for y(t)

EXAMPLE

Write two sets of parametric equations for the rectangular eq'n below.

$$y = 2x^3$$

- 1) Define t, unless given Try t = x, or $t = (\underline{})$ if () in eq'n
- **2)** Solve for x(t)
- 3) Plug x(t) into original eq'n for x
- **4)** Solve for y(t)

Equations of Circles and Ellipses

- To parameterize an eq'n containing $x^2 + y^2$, write the eq'n in the form $(__)^2 + (__)^2 = 1$.
 - Set $f(x)^2 = \underline{\hspace{1cm}}(t)$, and $g(y)^2 = \underline{\hspace{1cm}}(t)$, then solve for x & y.

Recall Eliminate the Parameter	New	Parameterize Equations
$x(t) = 2\cos t$ $y(t) = \sin t$ $(\frac{x}{2})^{2} + $	$\sin^2(t) = 1$ $\left(\frac{x}{2}\right)^2 + y$	$y^2 = 1$ $y(t) =$

EXAMPLE

Write parametric equations for the equation below.

$$9x^2 + y^2 = 9$$

- **1)** Write eq'n as $f(x)^2 + g(y)^2 = 1$
- **2)** Set $f(x)^2 = \cos^2(t)$, solve for x(t)
- 3) Set $g(y)^2 = \sin^2(t)$, solve for y(t)

PRACTICE

Write parametric equations for the rectangular equation below.

$$x^2 + y^2 = 25$$

1) Write eq'n as
$$f(x)^2 + g(y)^2 = 1$$

2) Set
$$f(x)^2 = \cos^2(t)$$
, solve for $x(t)$

3) Set
$$g(y)^2 = \sin^2(t)$$
, solve for $y(t)$