Previously, we multiplied polynomials. Now you'll need to "break them down" into ______ factors.

<u>Factors</u> = terms that multiply to a product

$$2 \cdot 3 = \underline{\hspace{1cm}} = 6$$

$$x(x+3) = \underline{\hspace{1cm}} = x^2 + 3x$$
Factor

Factor Out GCF

- GCF GROUPING FORMULAS AC METHOD • There's 4 methods to factor polynomials. FIRST, always look for Greatest ______ Factors in expressions.
 - Greatest Common Factor (GCF): largest expression (# and/or variable) that evenly divides out of ______ term

EXAMPLE: For each expression, factor out the GCF.

$$(A) 2x^2 + 6$$

$$7x^2 - 5x$$

$$-8x^3 + 16x$$

FACTORING GCF

1) Write "factor tree" for each term

FACTORING POLYNOMIALS

2) Pull GCF out of parentheses, leave remaining terms from Step 1 inside

	Factor Tree	
12		$6x^2$

PRACTICE: Factor out the Greatest Common Factor in the polynomial.

$$4x^2y - 100y$$

PRACTICE: Factor out the Greatest Common Factor in the polynomial.

$$-3x^4 + 12x^3 - 18x^2$$

Factor by Grouping

FACTORING POLYNOMIALS
GCF GROUPING FORMULAS AC METHOD

- For some polynomials, you may not find *one* common factor for *all* the terms.
 - Try separating terms into two _______, *THEN* factor out a GCF from each one!

	FACTORING POLYNOMIALS		
	GCF	<u>GROUPING</u>	
USE IF	Common factor in ALL termsUse <i>BEFORE</i> other methods	NO common factor in ALL terms (usually)	
	1) Write "factor tree" for each term	1) Re-write in standard form	
STEPS	2) Pull GCF out of parentheses, leave remaining terms inside	2) first 2 & last 2 terms into pairs 3) Factor out term GCF from <i>each</i> group	
		4) Factor out term GCF of <i>both</i> groups	
	$x^3 - 2x^2$	$x^3 - 2x^2 + 4x - 8$	
빌	$= (x^2 \cdot x + -2 \cdot x^2)$		
EXAMPLE	$=x^2(x-2)$		

PRACTICE: Factor the polynomial by grouping.

$$-x^2 - 5x + 7x + 35$$

PRACTICE: Factor the polynomial by grouping.

$$6x^3 - 2x^2 + 3x - 1$$

Factoring Using Formulas

FACTORING POLYNOMIALS

GCF GROUPING FORMULAS AC METHOD

• Just as we used special product formulas to multiply polynomials, we can also use them to factor.

$$(x+3)(x-3) = x^2 - 9$$
Factor

EXAMPLE: Factor the polynomials using formulas.

(A) $x^2 - 36$ $a = \underline{\qquad} b = \underline{\qquad}$ (B) $x^3 - 27$ $a = \underline{\qquad} b = \underline{\qquad}$ (C) $x^2 + 12x + 36$ $a = \underline{\qquad} b = \underline{\qquad}$

PRACTICE: Factor the polynomial by using special product formulas.

$$25x^2 - 110x + 121$$

PRACTICE: Factor the polynomial by using special product formulas.

$$\frac{x^2}{49} - 9$$

SPECIAL PRODUCT FORMULAS
$$(a+b)(a-b) = a^2 - b^2$$

$$(a+b)(a^2-ab+b^2=a^3+b^3)$$

$$(a-b)(a^2+ab+b^2=a^3-b^3)$$

$$(a\pm b)^2=a^2\pm 2ab+b^2$$

$$(a-b)(a^2+ab+b^2=a^3-b^3)$$

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

FACTORING POLYNOMIALS GCF GROUPING FORMULAS AC METHOD

Factor Using the AC Method When a = 1

• Recall: We multiplied binomials by _____. We can reverse this process to factor too!

	FACTORING POLYNOMIALS		
	AC – METHOD		
USE IF	Polynomial fits ++		
	1) List positive & negative factors of		
STEPS	2) Find factors of ac which add to b : $p \cdot q = ac$ $p + q = b$		
ST	3a) If <u>a</u> = 1:		
	$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}})$		
EXAMPLE	Factor the polynomial. Multiply to _ Add to		
	$a \cdot c$ b		
	$x^2 + 5x + 6$		
	$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}})$		
	•		

Multiply to Add to _____

PRACTICE: Factor the polynomial.

$$x^2 - 13x + 40$$

PRACTICE: Factor the polynomial.

$$x^2 - 2x - 15$$

Factor Using the AC Method When $a \neq 1$

FACTORING POLYNOMIALS
GCF GROUPING FORMULAS AC METHOD

• When a _____1, factoring is trickier, but we can use grouping to solve!

	FACTORING POLYNOMIALS				
	AC – METHOD				
USE IF	• Polynomial fits $ax^2 + bx + c$				
S	1) List factors of $a \cdot c$ 2) Find factors of ac which add to b : $p \cdot q = ac$ $p + q = b$				
STEPS	3a) If $a = 1$: $(x + p)(x + q)$	3b) If $a \neq 1$: Write polynomial as $(ax^2 + \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} + c)$ 4) Factor by grouping			
	Factor the polynomial.	Factor the polynomial. Multiply to $a \cdot c$ Add to			
EXAMPLE	$x^{2} + 5x + 6$ $(x + 2)(x + 3)$ Multiply to 6 Add to 5	$2x^2 + 7x + 6$			

PRACTICE: Factor the polynomial.

$$4x^2 - 19x + 12$$

PRACTICE: Factor the polynomial.

$$3x^2 - 2x - 5$$