TOPIC: SOLVING RATIONAL EQUATIONS

- A rational equation is an equation with a _____ in the ____ of a fraction.
 - We can solve a rational equation by turning it into a _____ equation.

Rational Equation
$$\frac{1}{x-1} = 12$$

■ Solutions *CANNOT* be any value that makes a denominator _____; this is the _____.

EXAMPLE: Solve the rational equation.

$$\frac{x}{x-1} = \frac{7}{6} \qquad x \neq \underline{\qquad}$$

SOLVING RATIONAL EQUATIONS

- **1)** Determine _____ by setting denom. = ____
- 2) Multiply by ____ to eliminate fractions
- 3) Solve linear equation
- 4) Check solution with restriction

TOPIC: SOLVING RATIONAL EQUATIONS

Solution Equal to Restriction

EXAMPLE: Solve the rational equation.

$$\frac{x-5}{x-2} = \frac{-3}{x-2} + 6$$
 $x \neq$ _____

SOLVING RATIONAL EQUATIONS

- 1) Determine restriction by setting denom. = 0
- 2) Multiply by LCD to eliminate fractions
- 3) Solve linear equation
- 4) Check solution with restriction

• If your answer is **equal** to the **restriction**, then there is ______, i.e. solution set = ____.

PRACTICE: Solve the equation.

$$\frac{2x+4}{x-1} = 5$$

PRACTICE: Solve the equation.

$$\frac{5}{x} - \frac{2}{3x} = 4 + \frac{3}{x}$$

PRACTICE: Solve the equation.

$$\frac{-5}{x+4} - 3 = \frac{x-1}{x+4}$$