TOPIC: FUNCTION COMPOSITION

Function Composition

• Function composition is like evaluating, but you replace the inside variable of a function with **ANOTHER** ______.

EVALUATING a Function	COMPOSING a Function
$f(x) = x^2 + 3x - 10$	$f(x) = x^2 + 3x - 10$ $g(x) = x - 2$
$f(7) = ()^2 + 3() - 10$	$f(g(x)) = ($ $)^2 + 3($ $) - 10$
=	=
Result is a [NUMBER FUNCTION]	Result is a [NUMBER FUNCTION]

Note: f(g(x)) is often written as ______. First letter = outside function, second letter = inside function

EXAMPLE: Given the functions f(x) = x + 4 and $g(x) = x^2 - 3$, find the following composite functions (fully simplify your answer).

$$(A) (B) g(f(x)) =$$

TOPIC: FUNCTION COMPOSITION

PRACTICE: Given the functions $f(x) = \sqrt{x+4}$ and $g(x) = (x-2)^2 - 4$, (A) find $(f \circ g)(x)$ and (B) $(g \circ f)(x)$.

PRACTICE: Given the functions $f(x) = \frac{1}{x^2-2}$ and $g(x) = \sqrt{x+2}$, (A) find $(f \circ g)(x)$ and (B) $(g \circ f)(x)$.

TOPIC: FUNCTION COMPOSITION Evaluating Composed Functions

ullet You may have to compose functions and **then** _____ at a specific value, f(g(#)). Two common methods:

Method 1: Compose \rightarrow Evaluate Use when first asked to find $f(g(x))$	Method 2: Evaluate inside → Evaluate outside
$f(x) \qquad g(x)$ $f(g(x))$ $f(g(\#))$	$f(x) \qquad g(x)$ $g(\#)$ $f(g(\#))$
EXAMPLE: For $f(x) = x^2$ and $g(x) = x - 1$, find $f(g(x))$ and then evaluate $f(g(3))$	EXAMPLE: For $f(x) = x^2$ and $g(x) = x - 1$, evaluate $f(g(3))$

PRACTICE: Given the functions f(x) = x + 3 and $g(x) = x^2$, (A) find $(f \circ g)(2)$ and (B) $(g \circ f)(2)$.

TOPIC: FUNCTION COMPOSITION Domain Of Composite Functions

- ullet To find the **domain** of a composite function, follow these steps to exclude x-values from $f \circ g(x)$:
 - 1) Find any x-values not defined for _____
 - 2) Find any x-values that make g(x) not defined for _____

EXAMPLE: Given the functions $f(x) = \frac{1}{x-2}$ and $g(x) = \sqrt{x}$, determine $f \circ g(x)$ and its domain.

<u>PRACTICE</u>: Given the functions $f(x) = x^2$ and $g(x) = \sqrt{x-8}$ find $(f \circ g)(x)$ and determine its domain.

TOPIC: FUNCTION COMPOSITION Decomposing Functions

- Function decomposition is the ______ of function composition.
 - There are many correct answers when decomposing functions.

EXAMPLE: Express the function $h(x) = \sqrt{x-2}$ as a composition of two functions f & g so that $h(x) = (f \circ g)(x)$.

<u>PROBLEM</u>: Express the function $h(x) = \frac{1}{x^2 + 3x - 10}$ as a composition of two functions f & g so that $h(x) = (f \circ g)(x)$.