Introduction to Asymptotes

• To graph a rational function, you need to identify asymptotes: line that a curve approaches but does NOT ______.

Polynomial Functions	Rational Functions					
f(x) 4 3 -5 4 -1 2 -1 -2 -3 -4 -3 -4 -5 -4	f(x) Asymptote $x =$	-10111 0.01 0.1 1 2 3	$f(x) = \frac{1}{x}$ $-\frac{1}{10}$ -1			
As $x \to \infty$, $f(x) \to \infty$	As $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$	10				
As $x \to -\infty$, $f(x) \to \infty$	As $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$	100				
As $x \to 0$, $f(x) \to 0$	(from) As $x \to 0^+$, $f(x) \to$		'			
	(from) As $x \to 0^-$, $f(x) \to$					

• A rational function may have none, one, or multiple asymptotes, represented with dashed lines.

<u>PRACTICE</u>: Sketch the graph of the function $f(x) = \frac{1}{x^2}$. Identify the asymptotes on the graph.

		(x)						
	-5	4		ļ	ļ			
	-4-					<u>.</u>		
	2	_		! ! !	! !			
	٥			i i	i	į	i	
	-2 -							l
	-1-			i	j			ı
▼	_		1			_	<u>+</u> -	x
-5 -4 -3 -2 -		-1	1	<u> </u>	3	4_	ַט	
		-2				ļ		
		-3				ļ	ļ.,,	
				i	i	Ĺ	į.,	
		4						
		7- 5				7	177	i

Vertical Asymptote: x =

Horizontal Asymptote: y =

$$x | f(x) = \frac{1}{x^2}$$

$$\begin{array}{c|c}
-10 & & \\
 & & \\
-1 & & \\
 & & \\
-0.1 & & \\
 & & \\
0.1 & & \\
1 & & \\
2 & & \\
\end{array}$$

3

10

Determining Vertical Asymptotes

ullet To find vertical asymptotes, put the function in ______, then set denominator = ____ & solve for x.

$$f(x) = \frac{x+2}{(x+2)(x-3)}$$
Lowest Terms
$$f(x) = \frac{x+2}{(x+2)(x-3)}$$
Set Denominator = 0
& solve for x

Vertical Asymptote: $x = \underline{\hspace{1cm}}$

• Recall: Put function in lowest terms by factoring and cancelling common factors.

EXAMPLE: Find the vertical asymptote(s) of each function.

$$f(x) = \frac{2}{2x+6}$$

$$f(x) = \frac{1}{x^2 - 9}$$

<u>PRACTICE</u>: Based only on the vertical asymptotes, which of the following graphs could be the graph of the given function?

$$f(x) = \frac{x^2 - 4x}{x^2 - x - 12}$$
 VA(s): $x =$ _____

Determining Removable Discontinuities (Holes)

- To find **holes** in the graph of a rational function, factor, then set _____ = 0 & solve for x.
 - Holes (removable discontinuities) are represented on graphs as open circles.

EXAMPLE: Find any holes in the graph of the given function.

(A)

$$f(x) = \frac{x+3}{x^2 + 4x + 3}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

PRACTICE: Find all vertical asymptotes and holes of each function.

(A)

$$f(x) = \frac{-5x}{(2x-3)^2}$$

Hole(s): x =_____ VA(s): x =_____

$$VA(s): x = _____$$

x = _____ x = ____

$$\chi =$$

PRACTICE: Find all holes and vertical asymptotes of each function.

(B)
$$f(x) = \frac{x^2 - 2x}{2x^3 - x^2 - 6x}$$

Hole(s):
$$x =$$
_____ $VA(s)$: $x =$ _____

(C)
$$f(x) = \frac{x^2 + 10x + 25}{2x^2 + 8x - 10}$$

Hole(s):
$$x =$$
_____ $VA(s)$: $x =$ _____ $x =$ _____

Horizontal Asymptotes

- Vertical Asymptotes affect the domain of a rational function, but Horizontal Asymptotes affect the ______.
 - The horizontal asymptote depends on the degrees of the _____ & ____.

EXAMPLE: Identify the horizontal asymptote of each function.

(A)
$$f(x) = \frac{4x^2}{-x^3 - 5x + 9}$$

$$-x^{3}-5x+9$$

HA:
$$y = _____$$

(B)

$$f(x) = \frac{2x^2}{3x^2 + x - 1}$$

Deg. Num.
$$[<|=|]$$
 Deg. Denom.

HA:
$$y = _____$$

• The graph of a rational function may intersect a horizontal asymptote.

PRACTICE: Find the horizontal asymptote of each function.

(A)
$$f(x) = \frac{-5x}{(2x+3)^2}$$

(B)
$$f(x) = \frac{8x^2 + 1}{2x^2 - x - 6}$$

(C)
$$f(x) = \frac{x^2 + 4x}{2x^3 + 8x^2}$$

Deg. Num. [<|=] Deg. Denom.

Deg. Num. [<|=] Deg. Denom.

Deg. Num. [<|=] Deg. Denom.

HA:
$$y = _____$$

HA:
$$y = _____$$