Introduction to Sequences

◆ A **Sequence** is a LIST of numbers in a specific ______.

 $\{2, 4, 6, 8, _\}$

- ▶ The _____ in a sequence are called **Terms** (a.k.a. "elements" or "members").
- ► Sequences can be *finite* (______ after a certain number) or *infinite* (go on _____).

EXAMPLE

Find the 5th term in each sequence & identify if the sequence is *finite* or *infinite*.

(A)

(B)

$$\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots,\dots\}$$

[FINITE | INFINITE]

[FINITE | INFINITE]

- ◆ Sequences are like *functions*; they can follow _____ or equations.
 - ▶ Inputs are called Indexes, represented by ____, which ALWAYS starts at 1 and increases by 1
 - ▶ Outputs are called **Terms**, represented by _____.

Recall	Functions Functions								New Sequences								
Inputs Outputs	x $f(x) = 2x$	-1 2 -2 4	2.5	√7 5.20	π 6.28			Indexes Terms	n	1	2	3	4	5			
- T		- TOTHIS	$a_n = 2n$ y 9 7 6 5 4 3 2 1 -1 2 3		= 21	7-8-5											

EXAMPLE

Find the first 3 terms in each sequence.

 (\mathbf{A})

$$a - n^2$$

(**B**

$$a_n = \frac{1}{n+3}$$

(0

$$a_n = (-1)^n$$

$$a_1 =$$
_____, $a_2 =$ _____, $a_3 =$ _____

$$a_1 = a_2 = a_3 =$$

$$a_1 =$$
_____ , $a_2 =$ _____ , $a_3 =$ ____

PRACTICE

The first 4 terms of a sequence are $\{\sqrt{3}, 2\sqrt{3}, 3\sqrt{3}, 4\sqrt{3}, ...\}$. Continuing this pattern, find the 7th term.

PRACTICE

Determine the first 3 terms of the sequence given by the general formula.

$$a_n = \frac{1}{n! + 1}$$

Writing a General Formula

- ullet The **General** ("explicit") **Formula** of a sequence is an equation for a_n ("general term") containing n. (n = 1, 2, 3, ...)
 - ► To determine the general formula, find the ______ between the numbers.

Common Patterns in General Formulas of Sequences												
If sequences	Increase by 1 or 2 or 3	Alternate signs	Contain fractions	Increase exponentially								
Formula contains*	n or $2n$ or $3n$	$(-, +, -,) \rightarrow (-1)^n$ $(+, -, +,) \rightarrow (-1)^{n+1}$	Fractions (top & bottom may be different)	(#) ⁿ								
EXAMPLE	{5, 6, 7, 8, 9}	{-5,5,-5,5,-5}	$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots\right\}$	{2, 4, 8,16,32}								

*Note: You will often have to adjust your formula by $+, -, \times, \div$ constants to get the desired sequence.

EXAMPLE

Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 15th term.

$$\{\frac{1}{1 \cdot 2}, \frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \dots\}$$

EXAMPLE

Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 18th term.

$$\{-2,4,-6,8,-10,...\}$$

Recursive Formula

- ullet Like general formulas, recursive formulas tell us how to find the n^{th} term in a sequence.
 - lacktriangledown However, Recursive Formulas show how to find a_n based on the ______ term (a_{n-1}) instead of n.

Recall General Formula								New		Recursive Formula							
	Indexes	n	1	2	3	4	5			Indexes	n	1	2	3	4	5	
	Terms	$a_n = 2n$	<i>a</i> ₁ = 2	a ₂ = 4	<i>a</i> ₃ = 6	a ₄ = 8	$a_5 = 10$			Terms	$a_n = a_{n-1} + 2$	a ₁ = 2					
	$a_n = 2n$										$a_n =$	a_{n}	-1 +	- 2			
	Need [$m{n}$ PREVIOUS TERM] to calculate $n^{ ext{th}}$ term									Need [\underline{n} PREVIOUS TERM] to calculate $n^{ ext{th}}$ term							

EXAMPLE

Given the recursive formula and first term of each sequence below, find the next 3 terms.

$$(A) a_n = 2a_{n-1} + 3$$

$$a_n = 2a_{n-1} + 3 \qquad \qquad a_n = n \cdot a_{n-1}$$

$$a_1 = 1$$
 , $a_2 = \underline{\hspace{1cm}}$, $a_3 = \underline{\hspace{1cm}}$, $a_4 = \underline{\hspace{1cm}}$

$$a_1 = 1, a_2 = ... a_4 = ... a_4 = ... a_4 = ... a_4 = ... a_5 = ... a_6 = ... a_7 = ... a_8 =$$

PRACTICE

Write the first 6 terms of the sequence given by the recursive formula $a_n=a_{n-2}+a_{n-1}$; $a_1=1$; $a_2=1$