Introduction to Sequences ◆ A **Sequence** is a LIST of numbers in a specific ______. $\{2, 4, 6, 8, _\}$ - ▶ The _____ in a sequence are called **Terms** (a.k.a. "elements" or "members"). - ► Sequences can be *finite* (______ after a certain number) or *infinite* (go on _____). **EXAMPLE** Find the 5th term in each sequence & identify if the sequence is *finite* or *infinite*. (A) (B) $$\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots,\dots\}$$ [FINITE | INFINITE] [FINITE | INFINITE] - ◆ Sequences are like *functions*; they can follow _____ or equations. - ▶ Inputs are called Indexes, represented by ____, which ALWAYS starts at 1 and increases by 1 - ▶ Outputs are called **Terms**, represented by _____. | Recall | Functions Functions | | | | | | | | New Sequences | | | | | | | | | |----------------|---------------------|--------------|---|------------|-----------|-------|--|---------------|---------------|---|---|---|---|---|--|--|--| | Inputs Outputs | x $f(x) = 2x$ | -1 2
-2 4 | 2.5 | √7
5.20 | π
6.28 | | | Indexes Terms | n | 1 | 2 | 3 | 4 | 5 | | | | | - T | | - TOTHIS | $a_n = 2n$ y 9 7 6 5 4 3 2 1 -1 2 3 | | = 21 | 7-8-5 | | | | | | | | | | | | **EXAMPLE** Find the first 3 terms in each sequence. (\mathbf{A}) $$a - n^2$$ (**B** $$a_n = \frac{1}{n+3}$$ (0 $$a_n = (-1)^n$$ $$a_1 =$$ _____, $a_2 =$ _____, $a_3 =$ _____ $$a_1 = a_2 = a_3 =$$ $$a_1 =$$ _____ , $a_2 =$ _____ , $a_3 =$ ____ PRACTICE The first 4 terms of a sequence are $\{\sqrt{3}, 2\sqrt{3}, 3\sqrt{3}, 4\sqrt{3}, ...\}$. Continuing this pattern, find the 7th term. PRACTICE Determine the first 3 terms of the sequence given by the general formula. $$a_n = \frac{1}{n! + 1}$$ ### Writing a General Formula - ullet The **General** ("explicit") **Formula** of a sequence is an equation for a_n ("general term") containing n. (n = 1, 2, 3, ...) - ► To determine the general formula, find the ______ between the numbers. | Common Patterns in General Formulas of Sequences | | | | | | | | | | | | | |--|----------------------------|--|---|------------------------|--|--|--|--|--|--|--|--| | If sequences | Increase by
1 or 2 or 3 | Alternate signs | Contain fractions | Increase exponentially | | | | | | | | | | Formula contains* | n or $2n$ or $3n$ | $(-, +, -,) \rightarrow (-1)^n$
$(+, -, +,) \rightarrow (-1)^{n+1}$ | Fractions
(top & bottom may
be different) | (#) ⁿ | | | | | | | | | | EXAMPLE | {5, 6, 7, 8, 9} | {-5,5,-5,5,-5} | $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots\right\}$ | {2, 4, 8,16,32} | | | | | | | | | *Note: You will often have to adjust your formula by $+, -, \times, \div$ constants to get the desired sequence. **EXAMPLE** Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 15th term. $$\{\frac{1}{1 \cdot 2}, \frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \dots\}$$ **EXAMPLE** Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 18th term. $$\{-2,4,-6,8,-10,...\}$$ #### **Recursive Formula** - ullet Like general formulas, recursive formulas tell us how to find the n^{th} term in a sequence. - lacktriangledown However, Recursive Formulas show how to find a_n based on the ______ term (a_{n-1}) instead of n. | Recall General Formula | | | | | | | | New | | Recursive Formula | | | | | | | | |------------------------|--|------------|---------------------------|--------------------|---------------------------|--------------------|------------|-----|--|---|---------------------|--------------------|------|-----|---|---|--| | | Indexes | n | 1 | 2 | 3 | 4 | 5 | | | Indexes | n | 1 | 2 | 3 | 4 | 5 | | | | Terms | $a_n = 2n$ | <i>a</i> ₁ = 2 | a ₂ = 4 | <i>a</i> ₃ = 6 | a ₄ = 8 | $a_5 = 10$ | | | Terms | $a_n = a_{n-1} + 2$ | a ₁ = 2 | | | | | | | | $a_n = 2n$ | | | | | | | | | | $a_n =$ | a_{n} | -1 + | - 2 | | | | | | Need [$m{n}$ PREVIOUS TERM] to calculate $n^{ ext{th}}$ term | | | | | | | | | Need [\underline{n} PREVIOUS TERM] to calculate $n^{ ext{th}}$ term | | | | | | | | **EXAMPLE** Given the recursive formula and first term of each sequence below, find the next 3 terms. $$(A) a_n = 2a_{n-1} + 3$$ $$a_n = 2a_{n-1} + 3 \qquad \qquad a_n = n \cdot a_{n-1}$$ $$a_1 = 1$$, $a_2 = \underline{\hspace{1cm}}$, $a_3 = \underline{\hspace{1cm}}$, $a_4 = \underline{\hspace{1cm}}$ $$a_1 = 1, a_2 = ... a_4 = ... a_4 = ... a_4 = ... a_4 = ... a_5 = ... a_6 = ... a_7 = ... a_8 =$$ **PRACTICE** Write the first 6 terms of the sequence given by the recursive formula $a_n=a_{n-2}+a_{n-1}$; $a_1=1$; $a_2=1$