TOPIC: RADICAL EXPRESSIONS

Square Roots

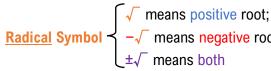
- The _____ of squaring a number is taking the square root.
 - Positive real numbers always have TWO roots: A ______ ("principal") and a ______ root.

Square Roots

-9

$$\sqrt{-9} =$$

Negative #s _____ be square rooted!



Radicand: Term inside the radical

MEMORY TOOL

Negatives $___side \sqrt{\ } \rightarrow __kay$ Negatives $___side \sqrt{\ } \rightarrow __maginary$

EXAMPLE: Evaluate the radicals.

(A)

$$\sqrt{36}$$

(B)

$$-\sqrt{36}$$

(C)

$$\sqrt{-36}$$

PRACTICE: Evaluate the radical.

$$-\sqrt{\frac{1}{4}}$$

PRACTICE: Evaluate the radical.

$$\sqrt{(-5)^2}$$

TOPIC: RADICAL EXPRESSIONS

Even vs. Odd Roots

- The reverse of raising a number to the nth power is taking the ______.
 - n is the **index**, written at top-left of $\sqrt{\ }$ (Square Roots $\rightarrow n$ = 2, not written)

$$n^{th} \text{ Roots}$$

$$(a)^n = b \leftrightarrow \sqrt[n]{b} = a$$

Even Index (n = 2,4,6)		Odd Index (n = 3,5,7)	
	(<u>Square Root</u>)		(<u>Cube Root</u>)
(2) ² =	$\pm\sqrt{4}$ =	$(2)^3 = $	³ √ =
$(-2)^2 = $	√ <u>-4</u> =	$(-2)^3 = $	³ √ =
 [2 1] root(s): 1 positive, 1 negative Neg inside √ → Answer is [IMAGINARY NEGATIVE] 		• [$\underline{2}$ $\underline{1}$] root(s) \rightarrow Roots always sign as radicand • Neg inside $\sqrt{}$ \rightarrow Answer is [IMAGINARY NEGATIVE]	

 $\underline{\text{EXAMPLE}}$: Evaluate the following n^{th} roots if possible or indicate the answer is imaginary.

(**A**) ⁴√81

 $\begin{array}{c}
\mathbf{B} \\
\sqrt{-32}
\end{array}$

(**C**) $\sqrt[4]{-16}$

(*D*) $\sqrt[7]{(-5)^7}$

PERFECT POWERS			
Squares	Cubes		
$2^2 = 4$	$2^3 = 8$		
$3^2 = 9$	$3^3 = 27$		
$4^2 = 16$	$4^3 = 64$		
$5^2 = 25$	$5^3 = 125$		
$6^2 = 36$	Other		
$7^2 = 49$	$2^4 = 16$		
$8^2 = 64$	$2^5 = 32$		
$9^2 = 81$			
$10^2 = 100$	$3^4 = 81$		

• If a term in $\sqrt{\ }$ has an exponent = the index, they cancel out, leaving just the radicand.