
Intervals of Unknown Behavior

- We know how to determine end behavior, x-intercepts, y-intercept, and turning points of a polynomial function.
 - Find behavior between known points by breaking graph into ______ & plotting a _____ in each interval.

<u>PRACTICE</u>: Based on the known points plotted on the graph, determine what intervals the graph should be broken into in order to determine unknown behavior. f(x)

• To graph a polynomial function, include end behavior, x-intercepts, y-intercept, turning points, & points between.

 $f(x) = 2x^3 - 6x^2 + 6x - 2$

1) End Behavior $(a_n x^n)$:

 a_n + -

Right side [RISES | FALLS]

 $\begin{array}{ccc} n & \text{EVEN} & \text{ODD} \\ \text{Ends are} & [\text{SAME} \mid \text{OPPOSITE} \,] \end{array}$

2) x-int(s) & behavior \rightarrow Solve f(x) = 0

 $2(x-1)^3=0$

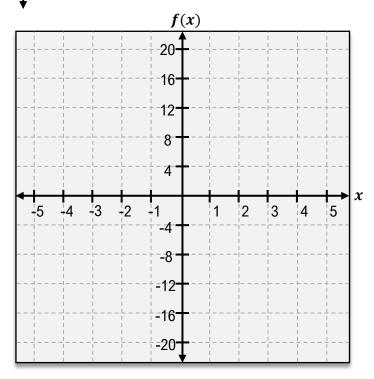
x = _____

Multiplicity: _

EVEN ODD [TOUCH | CROSS]

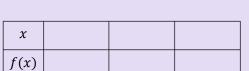
3) y-int \rightarrow Compute f(0):

$$f(0) = 2(0-1)^3 =$$


TO GRAPH

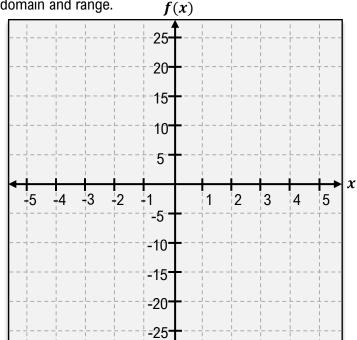
4) Determine intervals & plot a point in each

	 ,	
x		
f(x)		


5) Connect with smooth, continuous curve

6) Check max. turning pts. \rightarrow (n-1): ____

EXAMPLE: Graph the polynomial function. Determine the domain and range.

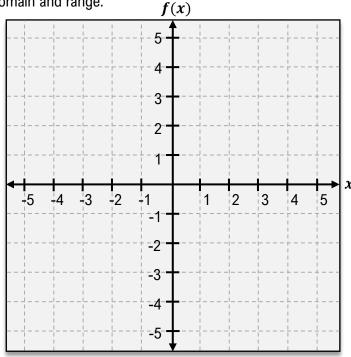

 $f(x) = 3x^3 + 12x^2 + 12x$ 1) End Behavior $(a_n x^n)$: Right side [RISES | FALLS] Ends are [SAME | OPPOSITE] 2) x-int(s) & behavior \rightarrow Solve f(x) = 0*x* = _____ *x* = _____ Multiplicity: ____ Multiplicity: ____ **TO GRAPH** [TOUCH | CROSS] [TOUCH | CROSS] 3) y-int \rightarrow Compute f(0): 4) Determine intervals & plot a point in each

- 5) Connect with smooth, continuous curve
- **6)** Check max. turning pts. \rightarrow (n-1):

FROM GRAPH Domain:

Range: _____

2) f(x) = 0


3) f(0) =

4) f() =f() =

f() =

PRACTICE: Graph the polynomial function. Determine the domain and range.

 $f(x) = (3x+2)(x-1)^2$ 1) End Behavior $(a_n x^n)$: Right side [RISES | FALLS] Ends are [SAME | OPPOSITE] 2) x-int(s) & behavior \rightarrow Solve f(x) = 0*x* = _____ *x* = _____ Multiplicity: ____ Multiplicity: ____ [TOUCH | CROSS] [TOUCH | CROSS] **TO GRAPH** 3) y-int \rightarrow Compute f(0): 4) Determine intervals & plot a point in each \boldsymbol{x} f(x)5) Connect with smooth, continuous curve **6)** Check max. turning pts. \rightarrow (n-1): ROM GRAPH Domain: Range: _____

2) f(x) = 0

3) f(0) =

.____

4)
$$f() = f() =$$