Intervals of Unknown Behavior - We know how to determine end behavior, x-intercepts, y-intercept, and turning points of a polynomial function. - Find behavior between known points by breaking graph into ______ & plotting a _____ in each interval. <u>PRACTICE</u>: Based on the known points plotted on the graph, determine what intervals the graph should be broken into in order to determine unknown behavior. f(x) • To graph a polynomial function, include end behavior, x-intercepts, y-intercept, turning points, & points between. $f(x) = 2x^3 - 6x^2 + 6x - 2$ 1) End Behavior $(a_n x^n)$: a_n + - Right side [RISES | FALLS] $\begin{array}{ccc} n & \text{EVEN} & \text{ODD} \\ \text{Ends are} & [\text{SAME} \mid \text{OPPOSITE} \,] \end{array}$ **2)** x-int(s) & behavior \rightarrow Solve f(x) = 0 $2(x-1)^3=0$ *x* = _____ Multiplicity: _ EVEN ODD [TOUCH | CROSS] 3) y-int \rightarrow Compute f(0): $$f(0) = 2(0-1)^3 =$$ **TO GRAPH** 4) Determine intervals & plot a point in each | |
, | | |------|-------|--| | x | | | | f(x) | | | 5) Connect with smooth, continuous curve **6)** Check max. turning pts. \rightarrow (n-1): ____ **EXAMPLE**: Graph the polynomial function. Determine the domain and range. $f(x) = 3x^3 + 12x^2 + 12x$ 1) End Behavior $(a_n x^n)$: Right side [RISES | FALLS] Ends are [SAME | OPPOSITE] 2) x-int(s) & behavior \rightarrow Solve f(x) = 0*x* = _____ *x* = _____ Multiplicity: ____ Multiplicity: ____ **TO GRAPH** [TOUCH | CROSS] [TOUCH | CROSS] 3) y-int \rightarrow Compute f(0): 4) Determine intervals & plot a point in each - 5) Connect with smooth, continuous curve - **6)** Check max. turning pts. \rightarrow (n-1): FROM GRAPH Domain: Range: _____ **2)** f(x) = 0 **3)** f(0) = **4)** f() =f() = f() = PRACTICE: Graph the polynomial function. Determine the domain and range. $f(x) = (3x+2)(x-1)^2$ 1) End Behavior $(a_n x^n)$: Right side [RISES | FALLS] Ends are [SAME | OPPOSITE] 2) x-int(s) & behavior \rightarrow Solve f(x) = 0*x* = _____ *x* = _____ Multiplicity: ____ Multiplicity: ____ [TOUCH | CROSS] [TOUCH | CROSS] **TO GRAPH** 3) y-int \rightarrow Compute f(0): 4) Determine intervals & plot a point in each \boldsymbol{x} f(x)5) Connect with smooth, continuous curve **6)** Check max. turning pts. \rightarrow (n-1): ROM GRAPH Domain: Range: _____ **2)** f(x) = 0 **3)** f(0) = .____ **4)** $$f() = f() =$$