Products of Complex Numbers in Polar Form

- lacktriangle Multiply complex numbers $(z_1 \& z_2)$ in polar form by ______ the r's and _____ the θ 's.
 - ▶ The polar form of complex numbers, $r(\cos \theta + i \sin \theta)$, is often abbreviated $r \cdot \underline{\hspace{1cm}}(\theta)$.

EXAMPLE

Find the product of the complex numbers.

New Multiply Complex Numbers in Polar Form

$$z_1 \cdot z_2 = r_1 \underline{\hspace{1cm}} r_2 \left[\cos(\theta_1 \underline{\hspace{1cm}} \theta_2) + i \sin(\theta_1 \underline{\hspace{1cm}} \theta_2) \right]$$

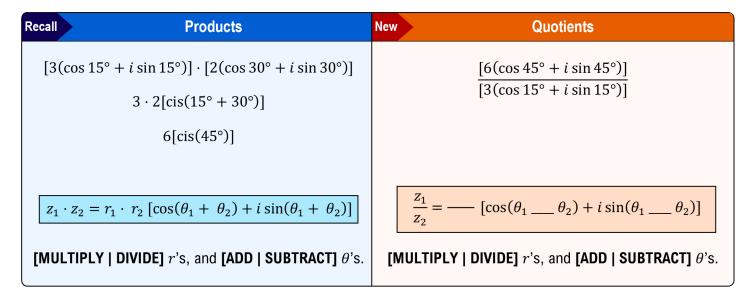
$$[3(\cos 15^{\circ} + i \sin 15^{\circ})] \cdot [2(\cos 30^{\circ} + i \sin 30^{\circ})]$$

EXAMPLE

Find the product of the complex numbers.

$$\left[4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right] \cdot \left[5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right]$$

PRACTICE Given $z_1 = 5(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ and $z_2 = 3(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$, find the product $z_1 \cdot z_2$.


PRACTICE Given $z_1 = \frac{2}{3}(\cos 25^{\circ} + i \sin 25^{\circ})$ and $z_2 = \frac{5}{2}(\cos 15^{\circ} + i \sin 15^{\circ})$, find the product $z_1 \cdot z_2$.

Quotients of Complex Numbers in Polar Form

◆ Dividing complex numbers is like multiplication, but with _____ operations.

EXAMPLE

Find the quotient.

EXAMPLE

Let
$$z_1 = 5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
 and $z_2 = 4\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)$. Find $\frac{z_1}{z_2}$.

$$\frac{\mathsf{Recall}}{r(\cos\theta + i\sin\theta)} = r\mathrm{cis}\theta$$

PRACTICE Given $z_1 = \frac{1}{5}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$ and $z_2 = 5(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$, find the quotient $\frac{z_1}{z_2}$.

PRACTICE

Given $z_1=12(\cos 30^\circ+i\sin 30^\circ)$ and $z_2=3(\cos 50^\circ+i\sin 50^\circ)$, find the quotient $\frac{z_1}{z_2}$.