Slopes of Lines

• Slope: A number measuring how _____ a line is; how much y changes divided by how much x changes.

 Δ = "change in"

 (x_1, y_1) & (x_2, y_2) are 2 points, may be given or chosen

EXAMPLE: Find the slopes of lines A & B shown in the graph.

$$\frac{\text{Line B}}{(x_1, y_1)} = \underline{\qquad}$$

$$(x_2, y_2) = \underline{\qquad}$$

Note: Order of points doesn't matter, slope will not change. Generally, set (x_1, y_1) as the _____ point.

EXAMPLE: Find the slope of Line B above using $(x_1, y_1) = (2, 4)$ and $(x_2, y_2) = (1, 2)$ instead.

PRACTICE: Find the slope of the line shown below.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
(Slope)

<u>PRACTICE</u>: Find the slope of the line containing the points (-1,1) and (4,3).

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
(Slope)

TOPIC: LINES Types of Slope

• Slope can be positive, negative, zero, or undefined.

If line goes $\begin{tabular}{ll} $\underline{\sf UP}$ & from left to right, slope is <math display="inline">{\tt [+|-]}$

If line goes $\overline{\text{DOWN}}$ from left to right, slope is [+]-]

HORIZONTAL line: slope is [0] UNDEFINED] y = #

VERTICAL line: slope is [0] UNDEFINED] x = #

PRACTICE: Graph a line with a slope of 0 that passes through the point (3, -2).

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

(Slope)

<u>PRACTICE</u>: Which of the following graphs below represents the equation x = 3?

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
(Slope)

Slope - Intercept Form

We can write the equation of a line using its _____ & ____.

$$y = \underline{x} + \underline{\qquad}$$

(Slope – Intercept Form)

y – Intercept =

y – value where line crosses y – axis (x = 0)

EXAMPLE: In the graph below, identify the y – intercept & slope.

Write the equation in slope-intercept form.

<u>PRACTICE</u>: In the graph shown, identify the y – intercept & slope. Write the equation of this line in Slope-Intercept form.

y = mx + b

Graphing Lines from Equations in Slope-Intercept Form

• A line equation in slope-intercept form tells you everything you need to graph it!

$$y = mx + b$$

EXAMPLE: Identify the y – intercept & slope of $y = \frac{2}{3}x + 1$, then graph the equation.

Graphing Lines in Slope-Intercept Form

- 1) Plot y intercept (0, b)
- **2)** Plot ONE more point using slope $\left(\frac{rise}{run}\right)$:
- 3) Connect points with a line

<u>PRACTICE</u>: Identify the y – intercept & slope of y = -2x - 3. Then graph the equation.

TOPIC: LINES Point – Slope Form

• If asked to write the equation of a line passing through a point that is _____ the y-intercept, use Point-Slope Form.

FORMS OF LINEAR EQUATIONS				
SLOPE-INTERCEPT		POINT-SLOPE		
EQN	y = mx + b	$y - y_1 = m(x - x_1)$		
USE IF	Given $m \& b$, asked for graph/EQ Given graph/EQ, asked for $m \& b$	Given m & point (x_1, y_1) $\frac{\mathbf{OR}}{\mathbf{G}}$ Given 2 points (x_1, y_1) & (x_2, y_2)		
EXAMPLE	Graph the equation $y = \frac{2}{3}x - 1$	a) Write the equation of a line in point – slope form with slope = $\frac{2}{3}$ which passes through (3,1). b) Graph the line c) Rewrite your equation from part (a) in Slope-Intercept form $ \begin{array}{c} $		

<u>PRACTICE</u>: Write the point-slope form of the equation of a line with a slope of $-\frac{2}{5}$ that passes through (1,3). Then graph the equation.

 $y - y_1 = m(x - x_1)$ (Point-Slope)

<u>PRACTICE</u>: Write the point-slope form of the equation of a line with a slope of 0 that passes through (2, -4). Then graph the equation.

 $y - y_1 = m(x - x_1)$

(Point-Slope)

Finding Equations of a Line Given 2 Points

- Sometimes you will not be given slope, and you'll be asked to write an equation when given TWO points.
 - Use _____ of the two points as (x_1, y_1)

FORMS OF LINEAR EQUATIONS				
	SLOPE-INTERCEPT	POINT-SLOPE	FORM #3	
EQN	y = mx + b	$y-y_1=m(x-x_1)$		
USE IF	Given $m \& b$, asked for graph/EQ Given graph/EQ, asked for $m \& b$	Given m & point (x_1, y_1) $\frac{\mathbf{OR}}{\mathbf{Given 2 points}} (x_1, y_1) \& (x_2, y_2)$		

<u>PRACTICE</u>: Write the point-slope form of the equation of a line that passes through the points (2,1) and (-4,3). Then graph the equation.

Standard Form of a Line

- When problems give a line in **Standard** Form and ask for Slope or Intercept, you'll have to ______ it.
 - ullet To do this, ______ $oldsymbol{y}$ to left side of equation.

	FORMS OF LINEAR EQUATIONS				
SLOPE-INTERCEPT		POINT-SLOPE	STANDARD or "GENERAL"		
EQN	y = mx + b $y = 2x + 3$	$y-y_1=m(x-x_1)$	Ax + By + C = 0 $-4x + 2y - 6 = 0$		
USE IF	Given/asked for b	Given (x_1, y_1) & m or (x_2, y_2)	1) Asked to rewrite in other form OR 2) Finding x & y		

EXAMPLE: Find the slope & y-intercept of the equation -9x + 3y - 12 = 0.

- To graph a line in Standard Form, you can find the x & y intercepts quickly without rewriting in Slope-Intercept.
 - For x-intercept, set y = 0 & solve for x. For y-intercept, set x = 0 and solve for y.

EXAMPLE: Graph the equation 3x + 2y - 6 = 0 by finding the intercepts without using Slope-Intercept form.

<u>PRACTICE</u>: Find the slope & *y*-intercept of the line given by the equation 3x + 2y - 6 = 0.

FORMS OF LINEAR EQUATIONS			
SLOPE-INTERCEPT	POINT-SLOPE	STANDARD	
y = mx + b	$y \cdot y_1 = m(x \cdot x_1)$	Ax + By + C = 0	

<u>PRACTICE</u>: Graph the equation 9x + 6y + 18 = 0 by finding the intercepts.

Parallel and Perpendicular Lines

Parallel & perpendicular lines are related by _______

FORMS OF LINEAR EQUATIONS			
SLOPE-INTERCEPT	POINT-SLOPE	STANDARD	
y = mx + b	$y \cdot y_1 = m(x \cdot x_1)$	Ax + By + C = 0	

Parallel Lines

$$y = -3x + 2$$

$$y = -3x - 4$$

Perpendicular Lines

$$y = -3x + 2$$

$$y = \frac{1}{3}x - 4$$

 $m_1 = m_2$

Slopes are _____; y-intercepts are _____

Lines *never* intersect

 $m_1 = -\frac{1}{m_2}$

Slopes have _____ signs and are ____

Lines intersect at *right* angles (90°)

EXAMPLE: Write the equation of a line passing through (-1, 4) that is parallel to y = 2x - 6.

EXAMPLE: Write the equation of a line perpendicular to x + 4y - 8 = 0 that has a *y*-intercept of 3.

PRACTICE: Write an equation of a line that passes through the point (3, -4) and is parallel to the line x + 2y + 18 = 0.