• Algebraic Expression: Combination of numbers and ______ with math operations.

Letter which represents any number

 \rightarrow value [CAN | DOESN'T] vary

→ usually ____

Coefficient: Number multiplying a variable

→ value [CAN | DOESN'T] vary

→ usually at ______

Number without variables Constant:

 \rightarrow value [CAN | DOESN'T] vary \rightarrow usually at

Numerical Expressions

(Numbers, operations)

$$2(3) + 5$$

Algebraic Expressions

(Numbers, operations, _____ variables)

$$2x + 5$$

EXAMPLE: Determine if each of the following are algebraic expressions. Identify any coefficients & constants.

(A) $4\sqrt{x} + 8$ (B)3(14+5)

 (\mathbf{C}) 2 - 3xy (D)9x = 18

Numbers? Operations?

Numbers? Operations?

Numbers? Operations? Variables?

Numbers? Operations?

Variables? [YES | NO]

Variables? [YES | NO] [YES | NO]

Variables? [YES | NO]

Coefficient: Constant: ____ Coefficient: ____ Constant: ____ Coefficient: ____ Constant: ____ Coefficient: ____ Constant: ____

Note: When expressions have an ____ symbol between them, it forms an **equation**.

Evaluating Algebraic Expressions

- Just like with numbers, you'll often have to $+,-,\times,\div$ variables when given their exact values.
 - This is called **evaluating** an expression: ______ given values for variable(s) & use **PEMDAS**.

EXAMPLE: Evaluate the algebraic expressions when x = 3

$$(A) 2x + 5$$

$$-\frac{2(8-x)}{4x}$$

ORDER OF **OPERATIONS P**arentheses **E**xponents Multiply/Divide

Add/Subtract

<u>PRACTICE</u>: Evaluate the algebraic expression when x = 4 and y = -5.

$$2y - x(3 + y)$$

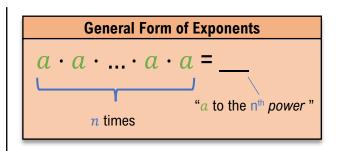
ORDER OF OPERATIONS

Parentheses Exponents Multiply/Divide Add/Subtract

<u>PRACTICE</u>: Evaluate the algebraic expression when x = -3 and y = 2.

$$x(20-15y) - |2x + y|$$

Exponents in Expressions


We use exponents to represent _____ multiplication.

$$\frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{5 \text{ times}} = \underline{\qquad}$$
"_ to the ___ power"

$$x^3 =$$

Base: ______ being multiplied

■ Exponent or Power: number of ______ base is multiplied

EXAMPLE: Evaluate the algebraic expression when x = 2 and y = 5.

$$(A) -3x^4$$

$$(\mathbf{B}) \\ y^2 + 10^2$$

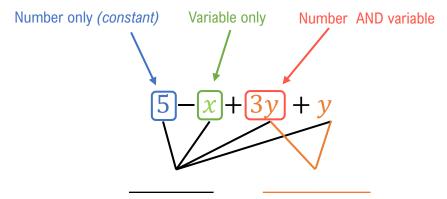
$$(\mathbf{C}) \qquad (x^3 + 4y) - 7$$

OPERATIONS Parentheses Exponents Multiply/Divide Add/Subtract

ORDER OF

Evaluate exponents BEFORE, doing other operations!

Simplifying Algebraic Expressions


• We write long expressions in a simpler form by _____ the # of terms.

Term: Parts of expressions separated by or signs

Like Terms: Terms with the same ______ to the same _____

$$4x + 6 - 3(x + 2)$$
Simplifies to

Terms in Expressions

1) _

2) _

3) _

EXAMPLE: Simplify the algebraic expression.

$$2x + 3 + 4(x + 2)$$

SIMPLIFYING ALG. EXPRESSIONS	
constants/variables into parentheses	(if any)
like terms by writing them next to ea	ach other
like terms by adding/subtracting	

PRACTICE: Simplify -3(5-x) + 10 - 7x

PRACTICE: Simplify -13 + 4x + x(9 - x)

PRACTICE: Simplify 3x + 14y - 7(-x + 2y)

SIMPLIFYING ALG. EXPRESSIONS

- 1) Distribute constants/vars through parentheses
- 2) Group like terms
- 3) Combine like terms