TOPIC: The Square Root Property

• You won't always be able to factor to solve quadratics.

■ There are **3 other methods** that you can use:

$$x^2 + x - 6 = 0$$
 $x^2 - 5 = 0$ $(x \quad)(x \quad) = 0$ $(x \quad)(x \quad) = 0$ Factorable? [YES | NO]

	SOLVING QUADRATIC EQUATIONS					
	$ax^2 + bx + c = 0$					
(Standard form)						
<u>FACTORING</u>		SQUARE ROOT PROPERTY	METHOD #3	METHOD #4		
USE IF	• Has factors OR	• $(x + \#)^2 = [$ constant $]$ OR				
	• No term (c =)	• No term (b =)				
STEPS	1) Write eqn in standard form	1) squared expression				
	2) Factor completely	2) Take & square root				
	3) Set factors = 0, solve for x	3) Solve for x				
	4) Check solutions	4) (Optional) Check solutions				
EXAMPLE: Solve the given quadratic equations using the square root property.						
$(A) \qquad (x+1)^2 = 4$		(B)	$4x^2 - 5 = 0$			

(A)	$(x+1)^2=4$	(B)	$4x^2 - 5 = 0$

• Solutions aren't always whole numbers! They could have _____ and/or _____

PRACTICE: Solve the given quadratic equation using the square root property.

$$\left(x - \frac{1}{2}\right)^2 - 5 = 0$$

TOPIC: The Square Root Property

PRACTICE: Solve the given quadratic equation using the square root property.

$$2x^2 - 16 = 0$$

Imaginary Roots

- You may get imaginary (or complex) roots when using the square root property.
 - Simplify them as you would any complex number!

EXAMPLE: Solve the given quadratic equation using the square root property.

$$4x^2 + 25 = 0$$

SQ. ROOT PROPERTY

- 1) Isolate squared expression
- 2) Take + & square root
- 3) Solve for x
- 4) (Optional) Check solutions

Note: When a and c have the same sign in standard form, you will *always* end up with a complex answer.