Finding Limits by Direct Substitution

◆ For many functions, like **polynomials** & **basic roots**, the limit is *ALWAYS* the _____ as the function value.

EXAMPLE

Find the limit.

(A)
$$\lim_{x \to 2} 6x^3 + 3x^2 - x + 5$$

(B)
$$\lim_{x \to 0} \sqrt{7x^2 + 4x + 16}$$

(C)
$$\lim_{x \to 0} \frac{x^2 + 3x + 2}{x + 1}$$

◆ For **rational** functions, the limit is the same as the function value as long as the denom. ____0.

EXAMPLE

Find the limit.

(A)

$$\lim_{x\to 2} 7$$

(B)

$$\lim_{x \to -1} 2x^2 + 3x$$

(C)

$$\lim_{x \to 3} \sqrt{3x^2 - 2}$$

PRACTICE

Find the limit.

(A)

$$\lim_{x \to 0} x^3 + 5x^2 - 7x + 3$$

(B)

$$\lim_{x \to 2} \sqrt{x^2 + 5}$$

$$\lim_{x \to 3} \frac{x^2 + 2x - 3}{x - 2}$$

Limits of Rational Functions: Denominator = 0

- ullet Recall: For **rational** functions, the limit is the same as the function value as long as the denom. $\neq 0$.
 - ▶ If denom. = 0, _____ top & bottom, ____ common factor, then evaluate.

Recall Denominator $\neq 0$	New Denominator = 0
$\lim_{x \to 0} \frac{x^2 + 3x + 2}{x + 1} = \frac{(0)^2 + 3(0) + 2}{0 + 1}$	$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1} =$
$=$ $\frac{2}{1}$	$\lim_{x\to -1}$
= 2	$\lim_{x\to -1}$

EXAMPLE

Find the limit.

(A)
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3}$$

$$\lim_{x \to -2} \frac{x+2}{x^2 - x - 6}$$

EXAMPLE

Find the limit.

(A)

$$\lim_{x \to 1} \frac{x^3 - 2x^2 + x}{x - 1}$$

(B)
$$\lim_{x \to 2} \frac{x^3 - 2x^2 + x}{x - 1}$$

PRACTICE Find the limit.

(A)

$$\lim_{x \to 0} \frac{3x^2 + 7x}{x}$$

(B)

$$\lim_{x \to 2} \frac{x^2 - 7x + 12}{x - 3}$$

(C)

$$\lim_{x \to -2} \frac{x^2 - 5x - 14}{x + 2}$$

(D)

$$\lim_{x \to \infty} \frac{\sin x}{x}$$

Limits of Rational Functions with Radicals

- ullet Recall: For **rational** functions, the limit is the same as the function value as long as the denom. $\neq 0$.
 - If denom. = 0 & function has a $\sqrt{}$, multiply top & bottom by _____, cancel common factor, then evaluate.

Recall	Rational Functions	New Rational Functions with Radicals	
$\lim_{x \to -1} \frac{x^2 + 1}{x}$	$\frac{+3x+2}{x+1} = \lim_{x \to -1} \frac{(x+1)(x+2)}{x+1}$	$\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}$	Recall $a + \sqrt{b} \leftrightarrow a - \sqrt{b}$
	$= \lim_{x \to -1} (x+2)$	lim x→2	(Conjugates)
	=(-1)+2	$x \rightarrow 2$	
	= 1	$\lim_{x\to 2}$	

EXAMPLE

Find the limit.

$$\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x}$$

EXAMPLE

Find the limit.

$$\lim_{x \to 0} \frac{\sqrt{4-x}-2}{x}$$

PRACTICE

Find the limit.

$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

$$\lim_{x\to 0} \frac{\sqrt{x-1}-1}{x}$$

$$\lim_{x \to 5} \frac{x - 5}{\sqrt{x} - \sqrt{5}}$$