Intro to Law of Sines

- ◆ Unlike right triangles, you _____ solve sides in *non-right* triangles using SOH-CAH-TOA & Pythag. Theorem.
 - Instead, use the Law of Sines, which compares ratios of _____ to ____.

EXAMPLE

Solve for side length a in the the following triangles.

PRACTICE

Use the **Law of Sines** to find the length of side a to the nearest tenth of a degree.

PRACTICE

Use the Law of Sines to find the angle \boldsymbol{B} to the nearest tenth of a degree.

Recall
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

Solving ASA & SAA Triangles

Law of Sines Law of Cosines
ASA SAA SSA SAS SSS

◆ Use the **Law of Sines** to solve these types of triangles in which you're given:

Angle-Side-Angle (ASA)	Side-Angle-Angle (SAA)	Side-Side-Angle (SSA)
Angle Angle C Side b 2 angles & side between them Example: A, C, b	Side c Angle Angle C ■ 2 angles & side adjacent to either Example: A, C, c	Side C Side Si

EXAMPLE

Classify the following triangle, then solve.

$$A = 30^{\circ}, C = 70^{\circ}, c = 6$$

HOW TO: Solve ASA & SAA Triangles

- 1) Draw triangle, label given side & angles
- **2)** Use $A + B + C = 180^{\circ}$ to solve 3rd angle
- 3) Use Law of Sines to solve remaining sides

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

$$A + B + C = 180^{\circ}$$
 (Angle Sum Formula)

PRACTICE

Classify the triangle, then solve.

$$A = 60^{\circ}, B = 15^{\circ}, c = 6$$

HOW TO: Solve ASA & SAA Triangles

- 1) Draw triangle, label given side & angles
- **2)** Use $A + B + C = 180^{\circ}$ to solve 3rd angle
- 3) Use Law of Sines to solve remaining sides

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

$$A + B + C = 180^{\circ}$$
 (Angle Sum Formula)

PRACTICE

An engineer wants to measure the distance to cross a river. If $B=30^{\circ}$, a=300 ft, $C=100^{\circ}$, find the shortest distance (in ft) you'd have to travel to cross the river.

HOW TO: Solve ASA & SAA Triangles

- 1) Draw triangle, label given side & angles
- **2)** Use $A + B + C = 180^{\circ}$ to solve 3rd angle
- 3) Use Law of Sines to solve remaining sides

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

$$A + B + C = 180^{\circ}$$

(Angle Sum Formula)

Solving SSA Triangles ("Ambiguous" Case)

- ◆ When solving an **SSA** triangle, you either get ____; ____; or _____ solution(s).
 - Always first use the Law of Sines to find a 2nd ______.

EXAMPLE

Solve for each ANGLE in the triangle.

$$a = 6, b = 8, \& A = 41^{\circ}$$

HOW TO: Solve SSA Triangles

- 1) Use Law of Sines to set up $sin(\angle) = \#$ If $\# > 1 \rightarrow [NO \mid 1 \mid 2]$ sol'n(s)
 If $\# \le 1 \rightarrow Step 2$
- 2) Use \sin^{-1} to solve for 2 possible* \angle 's: $\angle_1 = \sin^{-1}(\#) \; ; \; \angle_2 = 180^{\circ} \angle_1$ *If $\sin(\angle) = 1$, $\angle_1 \& \angle_2 = 90^{\circ} \rightarrow \text{[NO | 1 | 2] sol'n(s)}$
- 3) For \angle_2 in Step 2, add to given angle If sum $\ge 180^\circ$, $2^{nd} \triangle ? \square \rightarrow$ [NO | 1 | 2] sol'n(s) If sum $< 180^\circ$, $2^{nd} \triangle ? \square \rightarrow$ [NO | 1 | 2] sol'n(s)
- 4) Solve remaining angles & sides of all possible △

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)
$$A + B + C = 180^{\circ}$$
(Angle Sum Formula)

EXAMPLE

Solve the triangle: a = 1, b = 4, $A = 30^{\circ}$

HOW TO: Solve SSA Triangles

- 1) Use Law of Sines to set up $sin(\angle) = \#$ If $\# > 1 \rightarrow [NO \mid 1 \mid 2]$ sol'n(s) If $\# \le 1 \rightarrow Step 2$
- 2) Use \sin^{-1} to solve for 2 possible* \angle 's: $\angle_1 = \sin^{-1}(\#) \; ; \; \angle_2 = 180^{\circ} - \angle_1$ *If $\sin(\angle) = 1$, $\angle_1 \& \angle_2 = 90^{\circ} \rightarrow \text{[NO | 1 | 2] sol'n(s)}$
- 3) For \angle_2 in Step 2, add to given angle If sum $\ge 180^\circ$, $2^{\text{nd}} \triangle ? \square \rightarrow [\text{NO} \mid 1 \mid 2] \text{ sol'n(s)}$ If sum $< 180^\circ$, $2^{\text{nd}} \triangle ? \square \rightarrow [\text{NO} \mid 1 \mid 2] \text{ sol'n(s)}$
- 4) Solve remaining angles & sides of all possible \triangle

Recall

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

 $A + B + C = 180^{\circ}$ (Angle Sum Formula)

EXAMPLE

Solve the triangle: b=4, c=2, $B=29^{\circ}$

HOW TO: Solve SSA Triangles

- 1) Use Law of Sines to set up $sin(\angle) = \#$ If $\# > 1 \rightarrow [NO \mid 1 \mid 2]$ sol'n(s)
 If $\# \le 1 \rightarrow Step 2$
- **2)** Use \sin^{-1} to solve for 2 possible* \angle 's: $\angle_1 = \sin^{-1}(\#) \; ; \; \angle_2 = 180^{\circ} \angle_1$ *If $\sin(\angle) = 1$, $\angle_1 \& \angle_2 = 90^{\circ} \rightarrow \text{[NO | 1 | 2] sol'n(s)}$
- 3) For \angle_2 in Step 2, add to given angle If sum $\ge 180^\circ$, $2^{nd} \triangle ? \square \rightarrow$ [NO | 1 | 2] sol'n(s) If sum $< 180^\circ$, $2^{nd} \triangle ? \square \rightarrow$ [NO | 1 | 2] sol'n(s)
- 4) Solve remaining angles & sides of all possible \triangle

Recall

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)

 $A + B + C = 180^{\circ}$ (Angle Sum Formula)