TOPIC: CIRCLES Circles in Standard Form

• You'll need 2 things to graph a circle: ______ (C) & _____ (r)

■ The graph of a circle contains all points which are the _____ distance (r) from the center (C)

EXAMPLE: Graph the circle.

$$(x-1)^2 + (y-2)^2 = 9$$

- **1)** Center (h, k): (___ , ___)
- **2)** Radius: r =_____
- 3) Plot 4 points a distance r =____ to the **left**, **right**, **above** and **below** the center point.
- 4) Connect outside points with a smooth curve

Note: A circle [IS | IS NOT] a function because it [PASSES | FAILS] the VLT.

PRACTICE: Sketch a graph of the circle based on the following equation: $x^2 + (y - 1)^2 = 9$.

y

TOPIC: CIRCLES

PRACTICE: Sketch a graph of the circle based on the following equation: $(x-2)^2 + (y+3)^2 = 1$.

PRACTICE: Find the equation for the following circle.

$$(A)$$
$$x^2 + v^2 = 4$$

$$(B) (x+1)^2 + v^2 = 4$$

(A) (B) (C) (D)
$$x^2 + y^2 = 4 \qquad (x+1)^2 + y^2 = 4 \qquad (x-1)^2 + y^2 = 4 \qquad (x+1)^2 + y^2 = 16$$

$$(D) (x+1)^2 + y^2 = 16$$

EXAMPLE: Write the equation of a circle with the following characteristics and graph it.

Circle Ellipse Parabola Hyperbola

General Form → **Standard Form**

• You will sometimes be given the equation of a circle in **general form.**

$$x^2 + y^2 + Ax + By + C = 0$$

• Convert to **standard form** by *completing the square* for x & y, then graph.

Rewrite
$$(x^{2} + y^{2} + 2x + 6y + 8 = 0)$$
General Form
$$(x^{2} + 2x + \underline{\hspace{1cm}}) + (y^{2} + 6y + \underline{\hspace{1cm}}) = -8 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$
Complete the Square
$$(x + 1)^{2} + (y + 3)^{2} = 2$$
Standard Form

 $(x-h)^2 + (y-k)^2 = r^2$ Standard Form

EXAMPLE: Convert the following equation to standard form and sketch a graph of the circle.

$$x^2 + y^2 + 2x - 4y + 1 = 0$$

$\begin{array}{c} \text{GENERAL FORM} \rightarrow \text{STANDARD FORM} \\ \text{CIRCLES} \end{array}$

- 1) Group x terms & y terms on left; constant on right
- 2) Add _____ to both sides for x terms

Add $\underline{\hspace{1cm}}$ to both sides for y terms

- 3) Factor to $(x + -)^2$ & simplify
- **4)** Graph from ______ form

PRACTICE: Determine if the equation $x^2 + y^2 - 2x + 4y - 4 = 0$ is a circle, and if it is, find its center and radius.

- (A) Is a circle, center = c(0,0), radius r=2.
- (**B**) Is a circle, center = c(0,0), radius r=3.
- (C) Is a circle, center = c(1, -2), radius r = 3.
- (D) Is not a circle.

<u>PRACTICE</u>: Determine if the equation $x^3 + y^2 + 4x - 8y + 4 = 0$ is a circle, and if it is, find its center and radius.

- (A) Is a circle, center = c(0,0), radius r=4.
- (**B**) Is a circle, center = c(2, -4), radius r = 4.
- (C) Is a circle, center = c(-2.4), radius r = 4.
- (D) Is not a circle.