Powers of Complex Numbers in Polar Form (DeMoivre's Theorem)

lacktriangle Find powers of complex numbers in polar form by raising r to the n^{th} _____ and ____ θ by n.

EXAMPLE

Evaluate the expression.

Recall	Products	New		Powers	
$[3(\cos 15^{\circ} + i \sin 15^{\circ})] \cdot [3(\cos 15^{\circ} + i \sin 15^{\circ})]$		n 15°)]	[3(cos 15°	$+i\sin 15^\circ)]^2$	
	$3 \cdot 3[cis(15^{\circ} + 15^{\circ})]$				
	9[cis(30°)]				
$z_1 \cdot z_2 = i$	$r_1 \cdot r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1) \right]$	$+ \theta_2)]$	$z^n = r \left[\cos(n \bot \right]$		<u>θ)]</u>
			(DeMoiv	re's Theorem)	

EXAMPLE

Evaluate the following expression.

$$\left[4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right]^3$$

PRACTICE

Given
$$z = 3 \operatorname{cis}\left(\frac{4\pi}{5}\right)$$
, find the quotient z^5 .

EXAMPLE

Given the complex numbers $z_1=4\,\mathrm{cis}(25^\circ)$ and $z_2=\frac{1}{2}\,\mathrm{cis}(10^\circ)$, calculate $\left(\frac{z_1}{z_2}\right)^3$

Finding Roots of Complex Numbers

- ◆ Like real #'s, complex roots are just numbers you can raise to the power to get the original number.
 - ► Unlike real #'s, complex numbers have _____ roots.

Recall Roots: Real #'s	New Roots of Co	Roots of Complex Numbers		
$2^3 = 8$	$(2 \operatorname{cis} 15^{\circ})^3 = 8 \operatorname{cis} 45^{\circ}$	$(8 \operatorname{cis} 45^{\circ})^{\frac{1}{3}}$		
$8^{\frac{1}{3}} = 2$	$(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta)$ (DeMoivre's Theorem)	$(r \operatorname{cis} \theta)^{\frac{1}{n}} = r^{\frac{1}{n}} \operatorname{cis}(\theta_k)$ Where, $\theta_k = \frac{1}{n} \cdot (\theta + 2\pi \cdot \underline{\hspace{1cm}})$ And $k = 0, 1, 2, \dots n - 1$		

EXAMPLE

Find the cube roots of 8 cis 45°.

$$\frac{\mathbf{Recall}}{r(\cos\theta + i\sin\theta)} = r\mathrm{cis}\theta$$

$z = \underline{} \operatorname{cis}(\underline{})$

$$z = \underline{} \operatorname{cis}(\underline{})$$

$$z = \underline{} \operatorname{cis}(\underline{})$$

HOW TO: Find Roots of Complex Numbers

1) Find $r^{\frac{1}{n}}$

For k = 0, 1, 2, ... n - 1

2) Set up $z_k = r^{\frac{1}{n}} \operatorname{cis}(\theta_k)$

3) Find $\theta_k = \frac{1}{n} \cdot (\theta + 2\pi^* k)$

*or 360°

EXAMPLE

If
$$z = 1024 \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
, calculate $\sqrt[5]{z}$.