Logarithms Introduction

- ◆ The _____ (inverse) operation of an exponential is taking the *logarithm* (log).
 - ▶ Logs and exponentials with the same **base** _____ each other.
 - A log gives us the power that some base must be raised to in order to equal a particular number.

Solving Polynomials $x^{3} = 216$ $\sqrt[3]{x^{3}} = \sqrt[3]{216}$ $x = \sqrt[3]{216}$ x = 3 x = 3Solving Exponentials $2^{x} = 8$ $2^{x} = 216$ $2 \times 2 \times 2 = 8$ x = 3 $x = \log$ (Logarithmic Form)
"log base 2 of 216"

◆ You will need to convert expressions between **exponential form** and **logarithmic form**.

EXAMPLE

Write each log in exponential form & each exponential in log form.

(A)
$$x = \log_5 800$$
 $\log_2 16 = 4$ C

ullet \log_{10} , known as the _____ log, can be written as just ____ and has its own calculator button: LOG

The Natural Log

- ullet Besides the common log, (\log_{10}), another frequently occurring log is \log ___, called the _____ log.
 - ► The natural log is written as _____, and also has its own calculator button: LN

EXAMPLE

Write each log in exponential form & each exponential in log form.

$$(A) x = \ln 17$$

$$(\mathbf{B}) \quad e^x = 4$$

PRACTICE

Convert the following logarithmic statement to its equivalent exponential form.

 (\mathbf{A})

$$\log_4 x = 5$$

(**B**)

$$x = \log 9$$

PRACTICE

Convert the following exponential statements to their equivalent logarithmic form.

(A)

$$3^x = 7$$

(**B**)

$$e^9 = x + 3$$

Evaluate Logarithms

◆ You can evaluate many logarithms using properties that come from the log being the _____ of an exponential.

New	Properties of Logarithms		
Name	Example	Property	Description
Inverse Property	$\log_2 2^3 = \underline{\qquad}$ $2^{\log_2 3} = \underline{\qquad}$	$\log_{\mathbf{b}} \mathbf{b}^{x} = x$ $\mathbf{b}^{\log_{\mathbf{b}} x} = x$	Logs & exponentials w/ the same base
Log of the Base	log ₂ 2 =	$\log_b b = 1$	Log of its <i>base</i> equals
Log of 1	log ₂ 1 = "2 to what power gives 1?"	$\log_b 1 = 0$	ANY log of 1 equals

EXAMPLE

Using known properties, evaluate the given logarithms.

 $\log_2 \sqrt[3]{2}$

(**B**) ln 1

(**C**) log 10

 $\log_5\frac{1}{5}$

PRACTICE

Evaluate the given logarithm.

 (\boldsymbol{A})

 $\log_7 7^{0.3}$

(**B**)

 $\frac{3}{2}\log 1$

(**C**)

 $\log_9 \frac{1}{81}$