Properties of a Parabola

• A quadratic function is a polynomial of degree ___ in the standard form: $f(x) = ax^2 + bx + c$

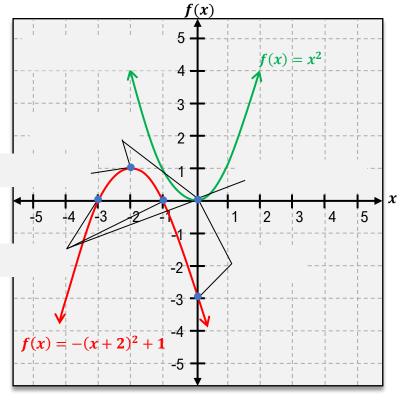
$$f(x) = x^2$$
 $f(x) = 2x^2 + 3x - 7$ $f(x) = \frac{2}{3}x^2 + 1$

- a, b, c can be any real number as long as $a \neq$ ____.
- Recall: The square function is a ______, as **all** quadratic functions will be.

 f(x) = x²

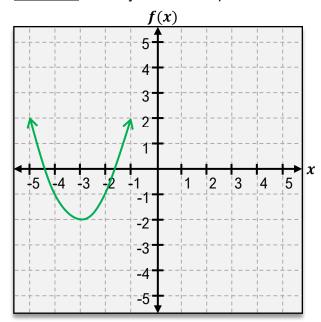
 Vertex: ____ [MIN|MAX]

 x-intercept(s): ____

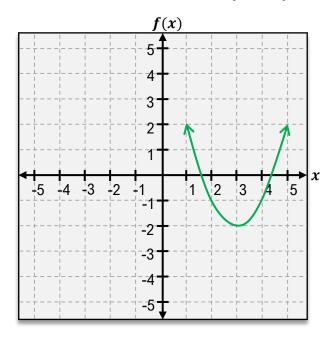

 y-intercept: ____

 Axis of Symmetry: ____

 Domain: always ____

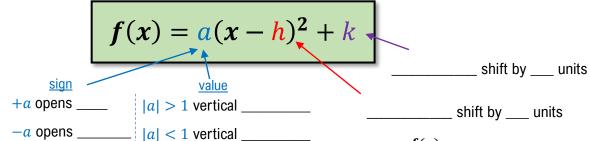

 Range when [MIN], _____: ___

$f(x) = -(x+2)^2 + 1$
Vertex: [MIN MAX]
x-intercept(s):
y-intercept:
Axis of Symmetry:
Domain:
Range when [MAX],::
Increasing?
Decreasing?


• Quadratic functions are commonly written in **vertex form**, which will help us graph with ease.

PRACTICE: Identify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.

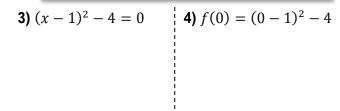
Vertex: _____ [MIN|MAX]

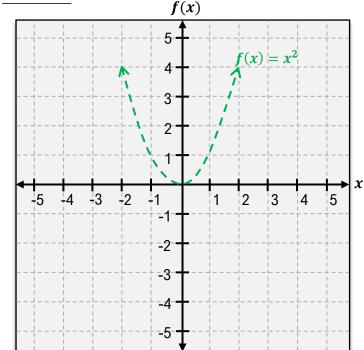

PRACTICE: Where is the axis of symmetry located on the given parabola?

Axis of Symmetry:

Vertex Form & Transformations

• Vertex form of a quadratic function is based on **transforming** the square function, $f(x) = x^2$.


 $f(x) = (x - 1)^2 - 4$ 1) Vertex (_____): ____ [MIN | MAX]

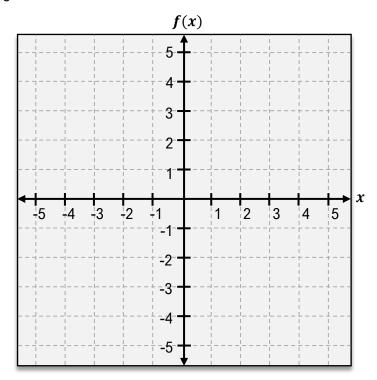

2) Axis of Symmetry ($x = ___$): _____

3) x-int(s) \rightarrow Solve f(x) = 0: _____

4) y-int \rightarrow Compute f(0): _____

5) ____ & connect with ____

Recall:


<u>FACTORING</u>		SQ. ROOT PROPERTY	COMPLETE THE SQUARE	QUADRATIC FORMULA
_		• $(x + \#)^2 = [$ constant $]$ OR	• Leading coeff. is 1 AND	Can't easily factor
	• <i>c</i> = 0	• <i>b</i> = 0	• b is even	Unsure what method to use

3) f(x) = 0

<u>EXAMPLE</u>: Graph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing.

Page 10 | Figure 10 | Fig

4) f(0) =

<u>PRACTICE</u>: Graph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing.

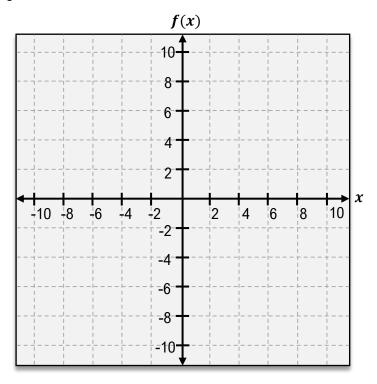
 $f(x) = -(x-5)^2 + 1$

 1) Vertex (h, k): _____ [MIN|MAX]

 2) Axis of Symmetry (x = h): _____

 3) x-int(s) \rightarrow Solve f(x) = 0: _____

 4) y-int \rightarrow Compute f(0): _____

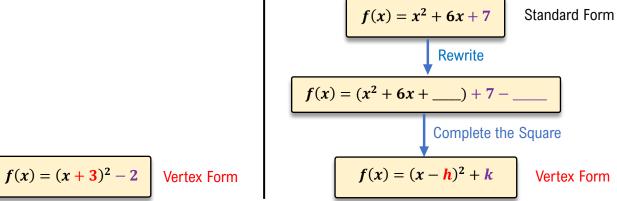

 5) Plot & connect with smooth curve

 Domain: _____

 Range: _____

 Increasing? _____

 Decreasing? _____



4)
$$f(0) =$$

Standard Form → **Vertex Form**

• When given a quadratic function in **standard form**, put it in **vertex form** by *completing the square*, then graph.

EXAMPLE: Put the standard form quadratic function in vertex form by completing the square.

• Since we are working with a function, not an equation, our steps change slightly.

$$f(x) = x^2 + 6x + 7$$

$$f(x) = (x + \underline{\hspace{1cm}})^2$$

COMPLETE THE SQUARE

- 1) Factor a out of 1st 2 terms $\rightarrow a(x^2 + \frac{b}{a}x) + c$
- **2)** Add & _____ $\left(\frac{b}{2_{-}}\right)^2$ _____

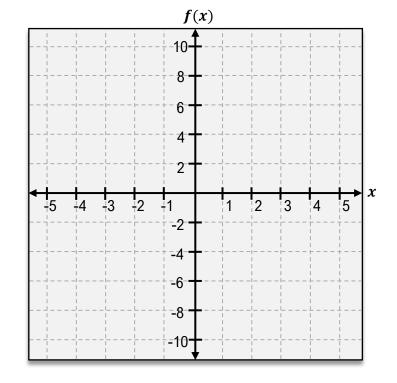
Move (subtraction \times a) _____

- 3) Factor to $\left(x + \frac{b}{2}\right)^2$ & simplify
- 4) Graph from _____ form

EXAMPLE: Graph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing.

$$f(x) = -2x^2 - 4x + 6$$


COMPLETE THE SQUARE


- 1) Factor a out of 1st 2 terms $\rightarrow a(x^2 + \frac{b}{a}x) + c$
- **2)** Add & subtract $\left(\frac{b}{2a}\right)^2$ inside

Move (subtraction $\times a$) outside

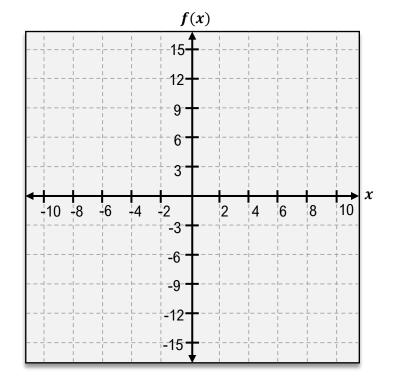
- 3) Factor to $\left(x + \frac{b}{2a}\right)^2$ & simplify
- 4) Graph from vertex form

	1) Vertex (h, k): [MIN MAX]		
ЬН	2) Axis of Symmetry $(x = h)$:		
TO GRAPH	3) x-int(s) \rightarrow Solve $f(x) = 0$:		
Т0	4) y-int \rightarrow Compute $f(0)$:		
	5) Plot & connect with smooth curve		
Н	Domain:		
FROM GRAPH	Range:		
ом с	Increasing?		
FR	Decreasing?		

PRACTICE: Graph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing.

$$f(x) = 3x^2 + 12x$$

COMPLETE THE SQUARE


- 1) Factor a out of 1st 2 terms $\rightarrow a(x^2 + \frac{b}{a}x) + c$ 2) Add & subtract $\left(\frac{b}{2a}\right)^2$ inside

Move (subtraction \times *a*) outside

- 3) Factor to $\left(x + \frac{b}{2a}\right)^2$ & simplify
- 4) Graph from vertex form

	1) Vertex (h, k): [MIN MAX]
ЬН	2) Axis of Symmetry $(x = h)$:
TO GRAPH	3) x-int(s) \rightarrow Solve $f(x) = 0$:
Т0	4) y-int \rightarrow Compute $f(0)$:
	5) Plot & connect with smooth curve
Н	Domain:
FROM GRAPH	Range:
ом с	Increasing?
FR	Decreasing?

