Position Vectors & Component Form

- ◆ If a vector has its [INITIAL | TERMINAL] point drawn at the origin, it is a position vector.
 - The component form $\langle v_x, v_y \rangle$ represents _____ in the x & y directions.

ullet Given initial pt (x_1, y_1) & terminal pt (x_2, y_2) , subtract respective x & y coordinates to find component form.

New
$$ec{v} = \left\langle v_x, v_y
ight
angle = \left\langle x_2 - x_1, y_2 - y_1
ight
angle$$

EXAMPLE

A vector has initial point (2,3) and terminal point (3,5). Without drawing, write the vector in component form.

PRACTICE

True or false: If $\vec{a} = \langle 3, 2 \rangle$ and \vec{b} has initial point (3, -1) & terminal point (6, 1), then $\vec{a} = \vec{b}$.

PRACTICE

True or false: If $\vec{a} = \langle 3, -2 \rangle$ and \vec{b} has initial point (-10, 5) & terminal point (-7, 3), then $\vec{a} = \vec{b}$.

EXAMPLE

If \vec{v} has init. point (4,3) & term. point (1,2), write \vec{v} in component form and sketch its position vector.

Finding Magnitude of a Vector

- ◆ Recall: The **magnitude** (*how much*) of a vector represents the _____.
 - Calculate by forming a right triangle with the vector's components & using the Pythagorean Theorem.

EXAMPLE

Calculate the magnitude of \overrightarrow{PQ} from P=(1,2) to Q=(5,3).

Recall
$$ec{v} = \left\langle v_x, v_y \right\rangle = \left\langle x_2 - x_1, y_2 - y_1 \right
angle$$

PRACTICE

If vector $\vec{v} = \langle -4, -10 \rangle$, calculate the magnitude $|\vec{v}|$.

PRACTICE

If vector \vec{v} has initial point (-1,2) & terminal point (9,5), calculate the magnitude $|\vec{v}|$.

EXAMPLE

If \vec{v} has init. point (1,2) & term. point (4,4) sketch \vec{v} as a position vector and calculate $|\vec{v}|$.

Algebraic Operations on Vectors

◆ To add or subtract vectors algebraically, add or subtract their *x* & *y* ______, respectively.

◆ To multiply a vector by a scalar, _____ the scalar to each *x* & *y* component.

New
$$k \cdot \langle v_x, v_y \rangle = \langle \underline{} \cdot v_x, \underline{} \cdot v_y \rangle$$

EXAMPLE

Given the vectors $\vec{v} = \langle 8,5 \rangle$ and $\vec{u} = \langle 2,4 \rangle$, find the vector $\vec{v} - 3\vec{u}$.

PRACTICE

If vectors $\vec{v}=\langle 2,1\rangle, \ \vec{u}=\langle 3,4\rangle, \ \text{and} \ \vec{w}=\langle -1,1\rangle, \ \text{calculate} \ \vec{v}+\vec{u}-\vec{w}.$

PRACTICE

If vectors $\vec{v}=\langle 4,1\rangle$, $\vec{u}=\langle -8,3\rangle$, and $\vec{w}=\langle -2,-1\rangle$, calculate $\vec{w}-3(\vec{v}+\vec{u})$.

EXAMPLE

If vectors $\vec{a}=\langle 3,1\rangle,\ \vec{b}=\langle -4,9\rangle$ and $\vec{c}=5\vec{a}-2\vec{b}$, calculate the magnitude $|\vec{c}|$.