TOPIC: FUNCTION OPERATIONS Adding & Subtracting Functions

• We add & subtract functions exactly how we add & subtract polynomials. Simply combine like terms.

Adding & Subtracting Polynomials	Adding & Subtracting Functions	
$x^2 + 4$	$f(x) = x^2 + 4$	
+ (5x + 7)	g(x) = 5x + 7	
	f(x) + g(x) =	

Note: You may also see f(x) + g(x) written as _____ and f(x) - g(x) written as _____.

• Domain of f + g or f - g is all the numbers that are _____ between the domains of f & g independently.

EXAMPLE: Given the functions, $f(x) = x^2 + \frac{1}{x}$, $g(x) = x^2 + x + 2$, $h(x) = x + \sqrt{x - 8}$, complete the following operations below. Determine the domain of each new function.

$$f(x) + g(x) =$$

$$g(x) - h(x) =$$

Domain of *f*: _____

Domain of *g*: _____

Domain of *g*:_____

Domain of **h**: _____

Domain of (f + g):

Domain of (g - h):

TOPIC: FUNCTION OPERATIONS

<u>PROBLEM</u>: If $f(x) = \sqrt{x+4} + 30$ and $g(x) = \sqrt{x+4} - 2x + 35$ complete the following operation below. Determine the domain of the new function.

$$(A)$$

$$(f+g)(x) =$$

$$(B)$$

$$(f-g)(x) =$$

TOPIC: FUNCTION OPERATIONS

Multiplying And Dividing Functions

• You may be asked to multiply or divide functions and find the _____ of the resulting function.

Multiplying Functions		Dividing Functions	
$f(x) = \sqrt{x}$ $g(x) = (3x - 6)$	Dom: [,) Dom: (,)	$f(x) = \sqrt{x}$ $g(x) = (3x - 6)$	Dom : [,) Dom : [,)
$f(x)\cdot g(x) =$	<i>Dom</i> : [,)	$\frac{f(x)}{g(x)} = $ Dom:	[,)∪(,)
Domain: Set of numbers \underline{common} to domains of $f \& g$		Domain: Set of numbers \underline{common} to domains of $f \& g$ AND where $g(x) \neq \underline{\hspace{1cm}}$	

Note: You may also see $f(x) \cdot g(x)$ written as _____ and $\frac{f(x)}{g(x)}$ written as _____.

EXAMPLE: Given the functions, $f(x) = x^2 - 4$, g(x) = x + 2, complete the following operations below, and determine the domain of the new function.

$$f(x) \cdot g(x) =$$

$$\frac{f(x)}{g(x)} =$$

• Always determine the domain restrictions _____ simplifying the functions.

TOPIC: FUNCTION OPERATIONS

PRACTICE: Given the functions $h(x) = 2x^3 - 4$ and $k(x) = x^2 + 2$, find and fully simplify $h \cdot k(x)$.

<u>PRACTICE</u>: Given the functions L(x) = x - 2 and $M(x) = x^2$, calculate $\frac{L}{M}(5)$.