Parabolas as Conic Sections

• As conic sections, parabolas have a focus (______) & directrix (_____)

- To find **focus**, start at vertex: if opens \uparrow , go $[\uparrow \downarrow \downarrow]|p|$ units; if opens \downarrow , go $[\uparrow \downarrow \downarrow]|p|$ units
- To find **directrix**, start at vertex: if opens \uparrow , go [\uparrow | \downarrow] |p| units; if opens \downarrow , go [\uparrow | \downarrow] |p| units & draw line

ullet When p $m{ riangle}$ + the parabola opens [\uparrow | \downarrow] and when p $m{ riangle}$ - the parabola opens [\uparrow | \downarrow]

EXAMPLE: Graph the following parabola.

FO GRAPH

y

$$8(y-2) = (x-1)^2$$

- 1) Find the vertex (h, k): $(_ , _)$
- **2)** Calculate the p value: p =
- 3) Find focus (go [\uparrow | \downarrow] |p| units from vertex):
- **4)** From focus, go **left** & **right** 2|p| units: $(_, _)$ & $(_, _)$
- 5) Connect outer points with smooth curve
- **6)** Find directrix (go [\uparrow | \downarrow] | p | units from vertex): $y = \underline{\hspace{1cm}}$

<u>PRACTICE</u>: Graph the parabola $-4(y+1) = (x+1)^2$, and find the focus point and directrix line.

Focus: (-1,0)Directrix: y = -2

Focus: (0,1) Directrix: y = -1

Focus: (0,-1)Directrix: y = 1

Focus:
$$(-1, -2)$$

Directrix: $y = 0$

<u>PRACTICE</u>: If a parabola has the focus at (0, -1) and a directrix line y = 1, find the standard equation for the parabola.

$$(A) 4y = x^2$$

$$(\mathbf{B})\ 4(y-1)=x^2$$

$$(C) - 4y = x^2$$

(B)
$$4(y-1) = x^2$$

(C) $-4y = x^2$
(D) $-4(y+1) = x^2$

EXAMPLE: Identify the vertex, focus, & directrix of the parabola.

$$(A)$$

$$16y = x^2$$

$$(\mathbf{B})$$

$$\frac{1}{3}y = x^2$$

(C) (D)

$$8(y-1) = (x-2)^2$$
 $-12y = (x+1)^2$

$$-12y = (x+1)^2$$

Horizontal Parabolas

- Horizontal parabolas are just like vertical ones, but with ____ & ___ switched (so they are ______)
 - The directrix is always __ _____ to the axis of symmetry

Vertical Parabola

y $2y = x^{2}$ Focus Vertex^{*} **Directrix**

$$4py = x^2$$

If p is pos: parabola opens $[\uparrow \downarrow \downarrow \rightarrow \downarrow \leftarrow]$ If p is **neg**: parabola opens $[\uparrow \downarrow \downarrow \downarrow \rightarrow \downarrow \leftarrow]$

Directrix is [HORIZONTAL | VERTICAL]

Horizontal Parabola

$$4px = y^2$$

If p is pos: parabola opens $[\uparrow \downarrow \downarrow \rightarrow \downarrow \leftarrow]$ If p is neg: parabola opens $[\uparrow \downarrow \downarrow \downarrow \rightarrow \downarrow \leftarrow]$

Directrix is [HORIZONTAL | VERTICAL]

EXAMPLE: Graph the parabola

$$8x = y^2$$

- 1) Find the vertex (h, k): $(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$
- **2)** Calculate the p value: |p| =
- 3) Find focus (go [\uparrow] \downarrow] \rightarrow [\leftarrow] |p| units from vertex): (__,__)
- 4) From focus, go [Left & Right | Up & Down] |2p| units: (__,__)&(__,__)
- 5) Connect outer points with smooth curve
- **6)** Find directrix (go [$\uparrow | \downarrow | \rightarrow | \leftarrow] | p |$ units from vertex): [x | y] = _____

y

PRACTICE: Graph the parabola $8(x+1) = (y-2)^2$, and find the focus point and directrix line.

Focus: (1,2)Directrix: x = -3

Focus: (-1,4)Directrix: y = 0

Focus: (1,0)Directrix: y = -4

<u>PRACTICE</u>: If a parabola has the focus at (2,4) and a directrix line x=-4, find the standard equation for the parabola.

- (A) $12(x + 1) = (y 4)^2$ (B) $-(x + 1) = (y 4)^2$ (C) $12x = y^2$

- $(\mathbf{D}) \ 4(x-1) = (y+4)^2$

EXAMPLE: Identify the vertex, focus, & directrix of the parabola.

$$(A)$$
$$4x = y^2$$

$$(B)$$

$$9x - (y - 2)^2$$

(B) (C) (D)

$$9x = (y-2)^2$$
 $16(x-4) = (y+2)^2$ $-2(x-1) = y^2$