Intro to Polynomial Functions

- You will need to know how recognize polynomial functions & their graphs.
 - Recall: Polynomials have *only* positive whole number exponents (no negatives, no fractions)
 - Standard form: Like terms combined & in descending order of power $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

Degree n (highest exponent)

EXAMPLE: Determine if each function is a polynomial function. If so, put in standard form. State degree & leading coeff.

(A)

 $f(x) = -x^2 + 5x^3 - 6x + 4$

$$f(x) = 2x^{\frac{1}{2}} + 3$$

$$f(x) = -\frac{2}{3}x^4 + 1 + 3$$

Polynomial function? □

Degree:

Leading Coefficient: __

Polynomial function? □

Degree:

Leading Coefficient:

Polynomial function? □

Degree:

Leading Coefficient:

Graphs of Polynomial Functions

• Graphs of polynomial functions are _____ and ____ (no corners, no breaks)

Polynomial Functions

Domain: always _

NOT Polynomial Functions

<u>PRACTICE</u>: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 4x^3 + \frac{1}{2}x^{-1} - 2x + 1$$

Polynomial function? $\ \square$

Degree:

Leading Coefficient:

<u>PRACTICE</u>: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 2 + x$$

Polynomial function? $\ \square$

Degree:

Leading Coefficient: _____

PRACTICE: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 3x^2 + 5x + 2$$

Polynomial function?

Degree:

Leading Coefficient: _____

End Behavior

- Just as the graph of an inequality may go to $+\infty$ or $-\infty$, the graph of a polynomial function will *always* do this.
 - **End Behavior:** what the graph of f(x) does far to the *left* (_____) and far to the *right* (____)

Graphing Inequalities

Graphing Functions

• The behavior in the *middle* of the graph will look different depending on the function.

n is [EVEN | ODD]

$$a_n$$
 is $[+|-]$

$$a_n$$
 is $[+|-]$

n is [EVEN | ODD] n is [EVEN | ODD]

$$a_n$$
 is $[+|-]$

n is [EVEN | ODD]

• To determine the end behavior of a polynomial, look at the _____ term in standard form.

• If Leading Coefficient (a_n) is: positive: right side _____($f(x) \rightarrow$ ____)

negative: right side _____($f(x) \rightarrow$ ____)

Degree

Degree (n) is:

even: ends are _____

odd: ends are ____

EXAMPLE: Determine the end behavior of each polynomial function, then sketch.

(A)

$$f(x) = -4x^6 + x^3 + 2$$

Right [RISES | FALLS]

(B)

$$f(x) = 2x^3 + x$$

Right [RISES | FALLS]

Ends [SAME | OPPOSITE]

PRACTICE: Determine the end behavior of the given polynomial function.

$$f(x) = x^2 + 4x + x + 7x^3$$

Right side [RISES | FALLS]

Ends are [SAME | OPPOSITE]

PRACTICE: Match the given polynomial function to its graph based on end behavior.

$$f(x) = -2x^3 + x^2 + 1$$

Right side [RISES | FALLS]

Ends are [SAME | OPPOSITE]

(C)

Finding Zeros by Factoring & Multiplicity of Zeros

• There may be multiple **x-intercepts** of a polynomial function, called the *zeros, roots* or *solutions* of f(x) = 0.

• Find zeros by factoring & setting each factor = 0.

Multiplicity of a zero: ______ of times a factor occurs.

EXAMPLE: Find the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the xaxis at each zero.

$$f(x) = 2x(x-3)^2(x+4)^3$$

x = _____ x = ____

$$x =$$

Multiplicity: ____

Multiplicity: ____ Multiplicity: ____

[TOUCH | CROSS]

[TOUCH | CROSS]

[TOUCH | CROSS]

• Multiplicity determines what the graph does at that zero: If even: graph _____ x-axis

odd: graph x-axis

<u>PRACTICE</u>: Find the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero.

$$f(x) = 2x^4 - 12x^3 + 18x^2$$

x =_____ x =_____ Multiplicity: ____ Multiplicity: ____ [TOUCH | CROSS]

<u>PRACTICE</u>: Find the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero.

$$f(x) = x^2 (x - 1)^3 (2x + 6)$$

x =_____ x =____ x =____ Multiplicity: ____ Multiplicity: ____ Multiplicity: ____ [TOUCH | CROSS] [TOUCH | CROSS]

Turning Points

- Graphs of polynomial functions may have multiple turning points: points where the graph changes ______
 - The *maximum* number of turning points is n-1, where n is the _____ of the polynomial.
 - Each turning point is either a local _____ or ____

EXAMPLE: Determine the maximum number of turning points for each polynomial function.

(A)

$$f(x) = 6x^4 + 2x$$

(B)

$$f(x) = x^2 - 1$$

(C)

$$f(x) = -x^2 + 5x^3 - 6x$$

Max. turning points:

Max. turning points: ___

Max. turning points:

• When graphing, we'll be able to use turning points to check that we graphed correctly.

PRACTICE: Determine the maximum number of turning points for the given polynomial function.

$$f(x) = 6x^4 + 2x$$

Max. turning points: _____

<u>PRACTICE</u>: Based *ONLY* on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function?

$$f(x) = x^3 + 1$$

<u>PRACTICE</u>: The given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points.

 $4x^5$ Right side [RISES | FALLS]

Ends are [SAME | OPPOSITE]

Max. turning points: _____