TOPIC: MEAN

Calculating the Mean

◆ Find the **mean** (a.k.a. "average") by _____ all values, then _____ by the total # of values.

 $\overline{x} = ----$

▶ Mean is a "Measure of Center", it summarizes a data set in _____ "central" value.

EXAMPLE

Find the mean of each data set.

New	Mean						
(A) Sample: {5, 10, 12, 14, 3}	(<i>B</i>) Population: {5, 10, 12, 14, 3, 76}						
	▶ You may see μ for \bar{x} , N for n						
	From may see μ for x , N for n						

◆ While the mean uses all values in a data set, ______ values (outliers) can change it A LOT.

PRACTICE

Find the mean of the sample data below.

Ages of students in a college class 26 33 31 23 20 19 21 18 25

TOPIC: MEAN

EXAMPLE

The data below shows heart rates (in beats per minute) from a sample of adult males and females. Does there appear to be a difference in mean heart rates?

Heart Rates (beats per minute)										
Males	84	70	68	59	61	77	90	65	56	72
Females	80	73	88	91	69	85	91	81	79	77

