TOPIC: MULTIPLICATION RULE: INDEPENDENT EVENTS

Probability of Multiple Independent Events

◆ Events which do **NOT** depend on each other at all are called **Independent Events**.

EXAMPLE

Identify whether each set of events is independent or dependent.

(A)
Getting tails on the first toss of a coin
Getting tails on the second toss of a coin

Drawing and keeping a blue marble from a bag
Drawing a blue marble again

[INDEPENDENT | DEPENDENT]

[INDEPENDENT | DEPENDENT]

◆ For **independent events**, find the probability of event *A* AND event *B* occurring by ______ their probabilities.

$$P(A \cap B) = P(A) \underline{\hspace{1cm}} P(B)$$

EXAMPLE Find the probability of each set of events.

- (A) Getting heads on two consecutive coin flips
- (B) Rolling an even number on the first roll of a six-sided die and rolling a 3 on the second roll

♦ For any number of **independent events**, multiply _____ probabilities to find $P(A \cap B \cap C \cap ...)$

TOPIC: MULTIPLICATION RULE: INDEPENDENT EVENTS

PRACTICE

The spinner below has 6 equal regions. Find the probability of landing on yellow for the first spin and not landing on yellow on the second spin.

PRACTICE

The spinner below has 6 equal colored regions numbered 1-6. Find the probability of stopping on yellow for the first spin, stopping on an even number on the second spin, and stopping on blue or red on the third spin.

