Intro to Random Variables & Probability Distributions

- ◆ A Random Variable represents a single number determined by ______ for each outcome of an "experiment".
 - ► Discrete (DRV): #'s [CANNOT | CAN] be broken down further [e.g. Dice roll]
 - ► Continuous (CRV): #'s [CANNOT | CAN] be broken down further [e.g. height]
- ◆ A **Probability Distribution** shows the probabilities of _____ possible values that a random variable can be.

EXAMPLE

Verify that the table meets the criteria for a probability distribution.

Recall Freq. Distribu	ution	New Probability Distribution					
drank per Day f 0 10 1 20 2 40 3 20	eq. f 10 20 40 20	# Prizes won in random raffle X 0 1 2 3 4	Probability. P(X) 0.10 0.20 0.40 0.20 0.10	Criteria: 1)			

EXAMPLE You pay \$1 to play a random lottery. The profits and probabilities of each outcome are as follows.

(A) What is the missing probability in the table?

Lottery Profits				
Profit	Probability			
-\$1.00	0.40			
\$0.00	0.35			
\$5.00	?			
\$1,000,000.00	0.01			

(B) What is the probability of at least breaking even?

PRACTICE

A student is analyzing different types of variables in a statistics class. Which of the following below is a discrete random variable?

- (A) The time it takes for a randomly selected runner to complete a 5K race
- (B) The weight of a randomly chosen bag of apples from a grocery store
- (C) The number of defective lightbulbs from a randomly chosen batch in a factory
- (D) The number of days in a random month

EXAMPLE

In a random survey, people were asked how many sodas they drink per day.

(A) What is the probability a person responds with having at most 2 sodas per day?

Sodas per Day	Probability
0	0.50
1	0.31
2	0.09
3	0.05
4	0.03
5	0.01
6	0.01

(B) What is the probability a person responds with having **between 1 and 4** sodas per day?

Mean (Expected Value) of Random Variables

- ullet To find the mean μ or "**Expected Value**" E(X) of a DRV, ______ each value by its prob., then _____ results.
 - ▶ If not given a table, make one and include a column for $X \cdot P(X)$.

EXAMPLE

The table shows a probability distribution for the number of kids per household in a town. Find the expected value of this distribution.

# of kids (X)	0	1	2
Probability $P(X)$	0.15	0.60	0.25

Recall Mean of Data Set		New	V	Mear	n of DRV with Pr	obability Distribution
Sodas per day 0 1 2	$\mu = \frac{\sum x}{N}$ $\frac{0+1+2}{3} = 1$		X 0 1 2 Exp. Va	P(X) 0.15 0.60 0.25 II. E(X):	$X \cdot P(X)$	$\mu = E(X) = \sum$

PRACTICE

A factory produces lightbulbs in batches of 50. The probability distribution for the number of defective lightbulbs in a randomly selected batch is shown below. Find the expected value.

# of Defective bulbs (X)	0	1	2	3	4	5
Probability $P(X)$	0.20	0.30	0.25	0.15	0.07	0.03

Variance & Standard Deviation of Discrete Random Variables

- ◆ To find variance (σ^2) and standard deviation (σ) of a DRV, make a table with columns for $X \cdot P(X) \& X^2 \cdot P(X)$:
 - ▶ Recall: To find standard deviation, $\sigma = \sqrt{\sigma^2}$

New
$$\sigma^2 = \sum [X^2 \cdot P(X)] - \mu^2$$

$$= \sum [(X - \mu)^2 \cdot P(X)]$$
Easier to use!

EXAMPLE

The table shows a probability distribution for the number of kids per household in a town. Find the variance and standard deviation of this distribution.

# of kids (X)	0	1	2
Probability $P(X)$	0.15	0.60	0.25

Variance & Standard Deviation of DRV New Mean (μ) : $X^2 \cdot P(X)$ P(X) $X \cdot P(X)$ X μ^2 : $0 \cdot 0.15 = 0$ 0.15 $1 \cdot 0.60 = 0.60$ 1 0.60 $\sum X^2 \cdot P(X)$: 2 0.25 $2 \cdot 0.25 = 0.50$ Variance (σ^2) : $\mu = 1.10$ Std. Dev. (σ) :

PRACTICE

A company tracks the number of complaints they receive, where the random variable X is the number of complaints received daily. Find the variance & standard deviation of this distribution.

# of complaints (X)	0	1	2	3
Probability $P(X)$	0.45	0.30	0.20	0.05

Recall
$$\sigma^2 = \sum [X^2 \cdot P(X)] - \mu^2$$