١	Intro	duction	to l	Matche	d Pairs
	IIILI V	uucuu	ILVI	vialtile	u raiis

- ◆ Two data sets are **Matched Pairs** if they are ______ & each value is *paired* to another in a ____ relationship.
 - ► Common Relationships: 1) before & after of same individual; 2) related individuals; 3) self-reported vs measured.

EXAMPLE

Determine if the samples are matched pairs. If so, calculate the difference $(d = x_1 - x_2)$ between each matched pair. Then find the mean difference (\bar{d}) and standard deviation (s_d) .

New	New Matched Pairs									
(A)	(A) The data below shows heart rates from a sample of 9 adults before and after sleeping.									
	Heart Rates (beats per minute)									
	Before	84	70	68	79	71	85	90	65	56
	After	80	73	78	91	69	77	91	81	79
	Diff. $(d)^*$									
	*ALWAYS subtract in the same order									
	$n_1 = n_2$									
	Samples are related $\ \square$									
	Values paired 1:1 □									

EXAMPLE
For the following scenarios, determine if the two samples are independent or matched pairs.
1) A nutritionist measures the blood pressure of 30 patients before and after they begin a new diet, with the goal of determining whether the diet has an effect on blood pressure.
2) A teacher gives 40 students a practice exam, then a week later gives a different group of 40 students the same practice exam. The teacher wants to know the difference in scores.
3) A teacher gives 40 students a practice exam, then a week later gives the same 40 students a similar graded exam. The teacher wants to know if practice improves scores.

PRACTICE

A personal trainer is studying whether a new stretching routine improves flexibility. She records the forward reach (in cm) of 6 clients before and after a 4-week program. Calculate the difference (after – before) for each client, the mean difference, and standard deviation.

Stretching Reach (cm)					
Client	Before	After			
Α	22	26			
В	19	23			
С	24	27			
D	21	20			
E	18	18			
F	23	25			

Matched Pairs: Hypothesis Tests

♦ When conducting Hyp. Tests using matched pairs, replace \bar{x} , μ , s with ______.

EXAMPLE

A company claims its new medication reduces blood pressure. In a study, the sample mean difference in 37 patients' blood pressure before and 15 days after taking the medication was 3.2 with a standard deviation of 6.7. Perform a hypothesis test using $\alpha = 0.05$ to determine if the medication is effective in reducing blood pressure.

Random samples? \square Matched pairs? \square Normal $OR \ n > 30$? \square 1) H_0 : \square H_a : \square $d = \square$ $s_d = \square$

	1 Mean	Matched Pairs						
р.	$H_0: \mu = \#$	H_0 : $\mu_d = \#$						
Нур.	H_a : $\mu < />/\neq \#$	$H_a: \mu_d \ [< > \neq] \#$						
Test Stat.	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$	$t=rac{ar{d}-\mu_d}{s_d/\sqrt{n}}$ $n=$ # of pairs						
P-Val.	Area "beyond" t $df = n - 1$	t						
ıde	Because P -value [< >] α	, we						
Conclude	[REJECT FAIL TO REJECT] H_0 . There is							
တ	[ENOUGH NOT ENOUGH] evidence to { restate H_a }							

3)
$$df =$$

t =

P-value:

4) Because P-value [< | >] α , we [**REJECT** | **FAIL TO REJECT**] H_0 . There is [**ENOUGH** | **NOT ENOUGH**] evidence that the medication is effective in reducing blood pressure.

EXAMPLE

A professor randomly selects 12 students and records their scores on a pop quiz and a scheduled quiz given in the same week. Each student's two scores are paired, and the difference is calculated as

(Pop Quiz Score – Scheduled Quiz Score). From the data, she calculates $\bar{d}=-1.1$, $s_d=1.8$. Write H_0 & H_a to test the claim that students perform worse on pop quizzes than scheduled quizzes, and calculate the test statistic.

<u>TOPIC: TWO MEANS – MATCHED PAIRS (DEPENDENT SAMPLES)</u> <u>Difference in Means: Confidence Intervals</u>

<u>Difference in incurs. Communico intervato</u>

ullet To make a confidence interval for μ_d use point estimator \bar{d} and margin of error:

New $E=t_{lpha/2}\cdot \overline{\sqrt{n}}$

EXAMPLE

In a study on the effectiveness of a new blood pressure medication, the sample mean difference in 37 patients' blood pressure before and 15 days after taking the medication was 3.2 with a standard deviation of 6.7. Make a 90% confidence interval for the mean difference in blood pressure. What does this result suggest about the claim that there is no difference after taking the medication?

HOW TO:			
Interva	al for $oldsymbol{p}_{i}$	$_{1}-p_{2}$	2

1) Verify samples are:

Matched Pairs **AND** Random \square Normal $\mathbf{OR} \ n > 30$

2) Find critical value: $t_{\alpha/2}$

3) Point estimate: \bar{d}

4) Margin of Error: $E = t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$

5) Find upper & lower bounds

$$(\bar{d} - E, \bar{d} + E)$$

We are	% confident that the true di	fference in	blood pressure before
and after the m	edication is between	&	Because this
[DOES DOES	NOT] include 0, we [REJE	CT FAIL TO	REJECT] H_0 : $\mu_d = 0$.
There is [ENOL	JGH NOT ENOUGH] evider	nce that the	re is a difference

PRACTICE

Construct a 95% confidence interval for the mean difference of the population given the following information. Would you reject or fail to reject the claim that there is no difference in the mean?

$$\bar{d} = -0.728$$

$$s_d = 1.34$$

$$n = 10$$