| ١ | Intro | duction | to l | Matche | d Pairs | |---|---------|---------|------|----------|---------| | | IIILI V | uucuu | ILVI | vialtile | u raiis | - ◆ Two data sets are **Matched Pairs** if they are ______ & each value is *paired* to another in a ____ relationship. - ► Common Relationships: 1) before & after of same individual; 2) related individuals; 3) self-reported vs measured. **EXAMPLE** Determine if the samples are matched pairs. If so, calculate the difference $(d = x_1 - x_2)$ between each matched pair. Then find the mean difference (\bar{d}) and standard deviation (s_d) . | New | New Matched Pairs | | | | | | | | | | |-----|---|----|----|----|----|----|----|----|----|----| | (A) | (A) The data below shows heart rates from a sample of 9 adults before and after sleeping. | | | | | | | | | | | | Heart Rates (beats per minute) | | | | | | | | | | | | Before | 84 | 70 | 68 | 79 | 71 | 85 | 90 | 65 | 56 | | | After | 80 | 73 | 78 | 91 | 69 | 77 | 91 | 81 | 79 | | | Diff. $(d)^*$ | | | | | | | | | | | | *ALWAYS subtract in the same order | | | | | | | | | | | | $n_1 = n_2$ | | | | | | | | | | | | Samples are related $\ \square$ | | | | | | | | | | | | Values paired 1:1 □ | | | | | | | | | | | EXAMPLE | |--| | For the following scenarios, determine if the two samples are independent or matched pairs. | | 1) A nutritionist measures the blood pressure of 30 patients before and after they begin a new diet, with the goal of determining whether the diet has an effect on blood pressure. | | 2) A teacher gives 40 students a practice exam, then a week later gives a different group of 40 students the same practice exam. The teacher wants to know the difference in scores. | | 3) A teacher gives 40 students a practice exam, then a week later gives the same 40 students a similar graded exam. The teacher wants to know if practice improves scores. | #### PRACTICE A personal trainer is studying whether a new stretching routine improves flexibility. She records the forward reach (in cm) of 6 clients before and after a 4-week program. Calculate the difference (after – before) for each client, the mean difference, and standard deviation. | Stretching Reach (cm) | | | | | | |-----------------------|--------|-------|--|--|--| | Client | Before | After | | | | | Α | 22 | 26 | | | | | В | 19 | 23 | | | | | С | 24 | 27 | | | | | D | 21 | 20 | | | | | E | 18 | 18 | | | | | F | 23 | 25 | | | | **Matched Pairs: Hypothesis Tests** ♦ When conducting Hyp. Tests using matched pairs, replace \bar{x} , μ , s with ______. #### **EXAMPLE** A company claims its new medication reduces blood pressure. In a study, the sample mean difference in 37 patients' blood pressure before and 15 days after taking the medication was 3.2 with a standard deviation of 6.7. Perform a hypothesis test using $\alpha = 0.05$ to determine if the medication is effective in reducing blood pressure. Random samples? \square Matched pairs? \square Normal $OR \ n > 30$? \square 1) H_0 : \square H_a : \square $d = \square$ $s_d = \square$ | | 1 Mean | Matched Pairs | | | | | | | |------------|---|---|--|--|--|--|--|--| | р. | $H_0: \mu = \#$ | H_0 : $\mu_d = \#$ | | | | | | | | Нур. | H_a : $\mu < />/\neq \#$ | $H_a: \mu_d \ [< > \neq] \#$ | | | | | | | | Test Stat. | $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ | $t= rac{ar{d}-\mu_d}{s_d/\sqrt{n}}$ $n=$ # of pairs | | | | | | | | P-Val. | Area "beyond" t $df = n - 1$ | t | | | | | | | | ıde | Because P -value [< >] α | , we | | | | | | | | Conclude | [REJECT FAIL TO REJECT] H_0 . There is | | | | | | | | | တ | [ENOUGH NOT ENOUGH] evidence to { restate H_a } | | | | | | | | **3)** $$df =$$ t = P-value: **4)** Because P-value [< | >] α , we [**REJECT** | **FAIL TO REJECT**] H_0 . There is [**ENOUGH** | **NOT ENOUGH**] evidence that the medication is effective in reducing blood pressure. #### **EXAMPLE** A professor randomly selects 12 students and records their scores on a pop quiz and a scheduled quiz given in the same week. Each student's two scores are paired, and the difference is calculated as (Pop Quiz Score – Scheduled Quiz Score). From the data, she calculates $\bar{d}=-1.1$, $s_d=1.8$. Write H_0 & H_a to test the claim that students perform worse on pop quizzes than scheduled quizzes, and calculate the test statistic. # <u>TOPIC: TWO MEANS – MATCHED PAIRS (DEPENDENT SAMPLES)</u> <u>Difference in Means: Confidence Intervals</u> <u>Difference in incurs. Communico intervato</u> ullet To make a confidence interval for μ_d use point estimator \bar{d} and margin of error: # New $E=t_{lpha/2}\cdot \overline{\sqrt{n}}$ #### **EXAMPLE** In a study on the effectiveness of a new blood pressure medication, the sample mean difference in 37 patients' blood pressure before and 15 days after taking the medication was 3.2 with a standard deviation of 6.7. Make a 90% confidence interval for the mean difference in blood pressure. What does this result suggest about the claim that there is no difference after taking the medication? | HOW TO: | | | | |---------|---------------------------|--------------|---| | Interva | al for $oldsymbol{p}_{i}$ | $_{1}-p_{2}$ | 2 | 1) Verify samples are: Matched Pairs **AND** Random \square Normal $\mathbf{OR} \ n > 30$ **2)** Find critical value: $t_{\alpha/2}$ 3) Point estimate: \bar{d} **4)** Margin of Error: $E = t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$ 5) Find upper & lower bounds $$(\bar{d} - E, \bar{d} + E)$$ | We are | % confident that the true di | fference in | blood pressure before | |-----------------|------------------------------|--------------|---------------------------------------| | and after the m | edication is between | & | Because this | | [DOES DOES | NOT] include 0, we [REJE | CT FAIL TO | REJECT] H_0 : $\mu_d = 0$. | | There is [ENOL | JGH NOT ENOUGH] evider | nce that the | re is a difference | #### PRACTICE Construct a 95% confidence interval for the mean difference of the population given the following information. Would you reject or fail to reject the claim that there is no difference in the mean? $$\bar{d} = -0.728$$ $$s_d = 1.34$$ $$n = 10$$